MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthlem3 Structured version   Visualization version   GIF version

Theorem ivthlem3 23222
Description: Lemma for ivth 23223, the intermediate value theorem. Show that (𝐹𝐶) cannot be greater than 𝑈, and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivth.10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
ivth.11 𝐶 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
ivthlem3 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ∧ (𝐹𝐶) = 𝑈))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶   𝑥,𝑆   𝑥,𝑈

Proof of Theorem ivthlem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.11 . . . 4 𝐶 = sup(𝑆, ℝ, < )
2 ivth.10 . . . . . . . 8 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈}
3 ssrab2 3687 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑥) ≤ 𝑈} ⊆ (𝐴[,]𝐵)
42, 3eqsstri 3635 . . . . . . 7 𝑆 ⊆ (𝐴[,]𝐵)
5 ivth.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
6 ivth.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
7 iccssre 12255 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 693 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
94, 8syl5ss 3614 . . . . . 6 (𝜑𝑆 ⊆ ℝ)
10 ivth.3 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
11 ivth.4 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
12 ivth.5 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
13 ivth.7 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐷cn→ℂ))
14 ivth.8 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
15 ivth.9 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
165, 6, 10, 11, 12, 13, 14, 15, 2ivthlem1 23220 . . . . . . . 8 (𝜑 → (𝐴𝑆 ∧ ∀𝑧𝑆 𝑧𝐵))
1716simpld 475 . . . . . . 7 (𝜑𝐴𝑆)
18 ne0i 3921 . . . . . . 7 (𝐴𝑆𝑆 ≠ ∅)
1917, 18syl 17 . . . . . 6 (𝜑𝑆 ≠ ∅)
2016simprd 479 . . . . . . 7 (𝜑 → ∀𝑧𝑆 𝑧𝐵)
21 breq2 4657 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑧𝑥𝑧𝐵))
2221ralbidv 2986 . . . . . . . 8 (𝑥 = 𝐵 → (∀𝑧𝑆 𝑧𝑥 ↔ ∀𝑧𝑆 𝑧𝐵))
2322rspcev 3309 . . . . . . 7 ((𝐵 ∈ ℝ ∧ ∀𝑧𝑆 𝑧𝐵) → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
246, 20, 23syl2anc 693 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥)
259, 19, 243jca 1242 . . . . 5 (𝜑 → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
26 suprcl 10983 . . . . 5 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) → sup(𝑆, ℝ, < ) ∈ ℝ)
2725, 26syl 17 . . . 4 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
281, 27syl5eqel 2705 . . 3 (𝜑𝐶 ∈ ℝ)
2915simpld 475 . . . . 5 (𝜑 → (𝐹𝐴) < 𝑈)
305, 6, 10, 11, 12, 13, 14, 15, 2, 1ivthlem2 23221 . . . . . 6 (𝜑 → ¬ (𝐹𝐶) < 𝑈)
3113adantr 481 . . . . . . . . 9 ((𝜑𝑈 < (𝐹𝐶)) → 𝐹 ∈ (𝐷cn→ℂ))
32 suprub 10984 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
3325, 17, 32syl2anc 693 . . . . . . . . . . . . 13 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
3433, 1syl6breqr 4695 . . . . . . . . . . . 12 (𝜑𝐴𝐶)
35 suprleub 10989 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝐵 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
3625, 6, 35syl2anc 693 . . . . . . . . . . . . . 14 (𝜑 → (sup(𝑆, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝑆 𝑧𝐵))
3720, 36mpbird 247 . . . . . . . . . . . . 13 (𝜑 → sup(𝑆, ℝ, < ) ≤ 𝐵)
381, 37syl5eqbr 4688 . . . . . . . . . . . 12 (𝜑𝐶𝐵)
39 elicc2 12238 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
405, 6, 39syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
4128, 34, 38, 40mpbir3and 1245 . . . . . . . . . . 11 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4212, 41sseldd 3604 . . . . . . . . . 10 (𝜑𝐶𝐷)
4342adantr 481 . . . . . . . . 9 ((𝜑𝑈 < (𝐹𝐶)) → 𝐶𝐷)
4414ralrimiva 2966 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
45 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
4645eleq1d 2686 . . . . . . . . . . . . 13 (𝑥 = 𝐶 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐶) ∈ ℝ))
4746rspcv 3305 . . . . . . . . . . . 12 (𝐶 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝐶) ∈ ℝ))
4841, 44, 47sylc 65 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) ∈ ℝ)
49 difrp 11868 . . . . . . . . . . 11 ((𝑈 ∈ ℝ ∧ (𝐹𝐶) ∈ ℝ) → (𝑈 < (𝐹𝐶) ↔ ((𝐹𝐶) − 𝑈) ∈ ℝ+))
5010, 48, 49syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑈 < (𝐹𝐶) ↔ ((𝐹𝐶) − 𝑈) ∈ ℝ+))
5150biimpa 501 . . . . . . . . 9 ((𝜑𝑈 < (𝐹𝐶)) → ((𝐹𝐶) − 𝑈) ∈ ℝ+)
52 cncfi 22697 . . . . . . . . 9 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝐶𝐷 ∧ ((𝐹𝐶) − 𝑈) ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)))
5331, 43, 51, 52syl3anc 1326 . . . . . . . 8 ((𝜑𝑈 < (𝐹𝐶)) → ∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)))
54 ssralv 3666 . . . . . . . . . . . 12 ((𝐴[,]𝐵) ⊆ 𝐷 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈))))
5512, 54syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈))))
5655ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → ∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈))))
5728ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → 𝐶 ∈ ℝ)
58 ltsubrp 11866 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → (𝐶𝑧) < 𝐶)
5957, 58sylancom 701 . . . . . . . . . . . . . 14 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (𝐶𝑧) < 𝐶)
6059, 1syl6breq 4694 . . . . . . . . . . . . 13 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (𝐶𝑧) < sup(𝑆, ℝ, < ))
6125ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
62 rpre 11839 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
6362adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → 𝑧 ∈ ℝ)
6457, 63resubcld 10458 . . . . . . . . . . . . . 14 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (𝐶𝑧) ∈ ℝ)
65 suprlub 10987 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ (𝐶𝑧) ∈ ℝ) → ((𝐶𝑧) < sup(𝑆, ℝ, < ) ↔ ∃𝑦𝑆 (𝐶𝑧) < 𝑦))
6661, 64, 65syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → ((𝐶𝑧) < sup(𝑆, ℝ, < ) ↔ ∃𝑦𝑆 (𝐶𝑧) < 𝑦))
6760, 66mpbid 222 . . . . . . . . . . . 12 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → ∃𝑦𝑆 (𝐶𝑧) < 𝑦)
684sseli 3599 . . . . . . . . . . . . . . . 16 (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵))
6968ad2antrl 764 . . . . . . . . . . . . . . 15 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
70 simplll 798 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝜑)
7170, 8syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (𝐴[,]𝐵) ⊆ ℝ)
7271, 69sseldd 3604 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝑦 ∈ ℝ)
7370, 28syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝐶 ∈ ℝ)
7470, 25syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥))
75 simprl 794 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝑦𝑆)
76 suprub 10984 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧𝑆 𝑧𝑥) ∧ 𝑦𝑆) → 𝑦 ≤ sup(𝑆, ℝ, < ))
7774, 75, 76syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝑦 ≤ sup(𝑆, ℝ, < ))
7877, 1syl6breqr 4695 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝑦𝐶)
7972, 73, 78abssuble0d 14171 . . . . . . . . . . . . . . . 16 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (abs‘(𝑦𝐶)) = (𝐶𝑦))
8063adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → 𝑧 ∈ ℝ)
81 simprr 796 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (𝐶𝑧) < 𝑦)
8273, 80, 72, 81ltsub23d 10632 . . . . . . . . . . . . . . . 16 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (𝐶𝑦) < 𝑧)
8379, 82eqbrtrd 4675 . . . . . . . . . . . . . . 15 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (abs‘(𝑦𝐶)) < 𝑧)
8469, 83, 75jca32 558 . . . . . . . . . . . . . 14 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ (𝑦𝑆 ∧ (𝐶𝑧) < 𝑦)) → (𝑦 ∈ (𝐴[,]𝐵) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)))
8584ex 450 . . . . . . . . . . . . 13 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → ((𝑦𝑆 ∧ (𝐶𝑧) < 𝑦) → (𝑦 ∈ (𝐴[,]𝐵) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆))))
8685reximdv2 3014 . . . . . . . . . . . 12 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (∃𝑦𝑆 (𝐶𝑧) < 𝑦 → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)))
8767, 86mpd 15 . . . . . . . . . . 11 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆))
88 r19.29 3072 . . . . . . . . . . . 12 ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)) → ∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)))
89 pm3.45 879 . . . . . . . . . . . . . . 15 (((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → (((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) ∧ 𝑦𝑆)))
9089imp 445 . . . . . . . . . . . . . 14 ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) ∧ 𝑦𝑆))
9168ad2antll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → 𝑦 ∈ (𝐴[,]𝐵))
9244ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
93 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
9493eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
9594rspcv 3305 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝑦) ∈ ℝ))
9691, 92, 95sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (𝐹𝑦) ∈ ℝ)
9748ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (𝐹𝐶) ∈ ℝ)
9810ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → 𝑈 ∈ ℝ)
9997, 98resubcld 10458 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ((𝐹𝐶) − 𝑈) ∈ ℝ)
10096, 97, 99absdifltd 14172 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) ↔ (((𝐹𝐶) − ((𝐹𝐶) − 𝑈)) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + ((𝐹𝐶) − 𝑈)))))
10197recnd 10068 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (𝐹𝐶) ∈ ℂ)
10298recnd 10068 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → 𝑈 ∈ ℂ)
103101, 102nncand 10397 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ((𝐹𝐶) − ((𝐹𝐶) − 𝑈)) = 𝑈)
104103breq1d 4663 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (((𝐹𝐶) − ((𝐹𝐶) − 𝑈)) < (𝐹𝑦) ↔ 𝑈 < (𝐹𝑦)))
10593breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → ((𝐹𝑥) ≤ 𝑈 ↔ (𝐹𝑦) ≤ 𝑈))
106105, 2elrab2 3366 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑆 ↔ (𝑦 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑦) ≤ 𝑈))
107106simprbi 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑆 → (𝐹𝑦) ≤ 𝑈)
108107ad2antll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (𝐹𝑦) ≤ 𝑈)
10996, 98lenltd 10183 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ((𝐹𝑦) ≤ 𝑈 ↔ ¬ 𝑈 < (𝐹𝑦)))
110108, 109mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ¬ 𝑈 < (𝐹𝑦))
111110pm2.21d 118 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (𝑈 < (𝐹𝑦) → ¬ 𝑈 < (𝐹𝐶)))
112104, 111sylbid 230 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → (((𝐹𝐶) − ((𝐹𝐶) − 𝑈)) < (𝐹𝑦) → ¬ 𝑈 < (𝐹𝐶)))
113112adantrd 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ((((𝐹𝐶) − ((𝐹𝐶) − 𝑈)) < (𝐹𝑦) ∧ (𝐹𝑦) < ((𝐹𝐶) + ((𝐹𝐶) − 𝑈))) → ¬ 𝑈 < (𝐹𝐶)))
114100, 113sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑈 < (𝐹𝐶)) ∧ (𝑧 ∈ ℝ+𝑦𝑆)) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) → ¬ 𝑈 < (𝐹𝐶)))
115114expr 643 . . . . . . . . . . . . . . . . 17 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (𝑦𝑆 → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) → ¬ 𝑈 < (𝐹𝐶))))
116115com23 86 . . . . . . . . . . . . . . . 16 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → ((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) → (𝑦𝑆 → ¬ 𝑈 < (𝐹𝐶))))
117116impd 447 . . . . . . . . . . . . . . 15 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) ∧ 𝑦𝑆) → ¬ 𝑈 < (𝐹𝐶)))
118117adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (((abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈) ∧ 𝑦𝑆) → ¬ 𝑈 < (𝐹𝐶)))
11990, 118syl5 34 . . . . . . . . . . . . 13 ((((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → ((((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)) → ¬ 𝑈 < (𝐹𝐶)))
120119rexlimdva 3031 . . . . . . . . . . . 12 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (∃𝑦 ∈ (𝐴[,]𝐵)(((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) ∧ ((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)) → ¬ 𝑈 < (𝐹𝐶)))
12188, 120syl5 34 . . . . . . . . . . 11 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → ((∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) ∧ ∃𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧𝑦𝑆)) → ¬ 𝑈 < (𝐹𝐶)))
12287, 121mpan2d 710 . . . . . . . . . 10 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (∀𝑦 ∈ (𝐴[,]𝐵)((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → ¬ 𝑈 < (𝐹𝐶)))
12356, 122syld 47 . . . . . . . . 9 (((𝜑𝑈 < (𝐹𝐶)) ∧ 𝑧 ∈ ℝ+) → (∀𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → ¬ 𝑈 < (𝐹𝐶)))
124123rexlimdva 3031 . . . . . . . 8 ((𝜑𝑈 < (𝐹𝐶)) → (∃𝑧 ∈ ℝ+𝑦𝐷 ((abs‘(𝑦𝐶)) < 𝑧 → (abs‘((𝐹𝑦) − (𝐹𝐶))) < ((𝐹𝐶) − 𝑈)) → ¬ 𝑈 < (𝐹𝐶)))
12553, 124mpd 15 . . . . . . 7 ((𝜑𝑈 < (𝐹𝐶)) → ¬ 𝑈 < (𝐹𝐶))
126125pm2.01da 458 . . . . . 6 (𝜑 → ¬ 𝑈 < (𝐹𝐶))
12748, 10lttri3d 10177 . . . . . 6 (𝜑 → ((𝐹𝐶) = 𝑈 ↔ (¬ (𝐹𝐶) < 𝑈 ∧ ¬ 𝑈 < (𝐹𝐶))))
12830, 126, 127mpbir2and 957 . . . . 5 (𝜑 → (𝐹𝐶) = 𝑈)
12929, 128breqtrrd 4681 . . . 4 (𝜑 → (𝐹𝐴) < (𝐹𝐶))
13048ltnrd 10171 . . . . . . . 8 (𝜑 → ¬ (𝐹𝐶) < (𝐹𝐶))
131 fveq2 6191 . . . . . . . . . 10 (𝐶 = 𝐴 → (𝐹𝐶) = (𝐹𝐴))
132131breq1d 4663 . . . . . . . . 9 (𝐶 = 𝐴 → ((𝐹𝐶) < (𝐹𝐶) ↔ (𝐹𝐴) < (𝐹𝐶)))
133132notbid 308 . . . . . . . 8 (𝐶 = 𝐴 → (¬ (𝐹𝐶) < (𝐹𝐶) ↔ ¬ (𝐹𝐴) < (𝐹𝐶)))
134130, 133syl5ibcom 235 . . . . . . 7 (𝜑 → (𝐶 = 𝐴 → ¬ (𝐹𝐴) < (𝐹𝐶)))
135134necon2ad 2809 . . . . . 6 (𝜑 → ((𝐹𝐴) < (𝐹𝐶) → 𝐶𝐴))
136135, 34jctild 566 . . . . 5 (𝜑 → ((𝐹𝐴) < (𝐹𝐶) → (𝐴𝐶𝐶𝐴)))
1375, 28ltlend 10182 . . . . 5 (𝜑 → (𝐴 < 𝐶 ↔ (𝐴𝐶𝐶𝐴)))
138136, 137sylibrd 249 . . . 4 (𝜑 → ((𝐹𝐴) < (𝐹𝐶) → 𝐴 < 𝐶))
139129, 138mpd 15 . . 3 (𝜑𝐴 < 𝐶)
14015simprd 479 . . . . 5 (𝜑𝑈 < (𝐹𝐵))
141128, 140eqbrtrd 4675 . . . 4 (𝜑 → (𝐹𝐶) < (𝐹𝐵))
142 fveq2 6191 . . . . . . . . . 10 (𝐵 = 𝐶 → (𝐹𝐵) = (𝐹𝐶))
143142breq2d 4665 . . . . . . . . 9 (𝐵 = 𝐶 → ((𝐹𝐶) < (𝐹𝐵) ↔ (𝐹𝐶) < (𝐹𝐶)))
144143notbid 308 . . . . . . . 8 (𝐵 = 𝐶 → (¬ (𝐹𝐶) < (𝐹𝐵) ↔ ¬ (𝐹𝐶) < (𝐹𝐶)))
145130, 144syl5ibrcom 237 . . . . . . 7 (𝜑 → (𝐵 = 𝐶 → ¬ (𝐹𝐶) < (𝐹𝐵)))
146145necon2ad 2809 . . . . . 6 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐵𝐶))
147146, 38jctild 566 . . . . 5 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → (𝐶𝐵𝐵𝐶)))
14828, 6ltlend 10182 . . . . 5 (𝜑 → (𝐶 < 𝐵 ↔ (𝐶𝐵𝐵𝐶)))
149147, 148sylibrd 249 . . . 4 (𝜑 → ((𝐹𝐶) < (𝐹𝐵) → 𝐶 < 𝐵))
150141, 149mpd 15 . . 3 (𝜑𝐶 < 𝐵)
1515rexrd 10089 . . . 4 (𝜑𝐴 ∈ ℝ*)
1526rexrd 10089 . . . 4 (𝜑𝐵 ∈ ℝ*)
153 elioo2 12216 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
154151, 152, 153syl2anc 693 . . 3 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
15528, 139, 150, 154mpbir3and 1245 . 2 (𝜑𝐶 ∈ (𝐴(,)𝐵))
156155, 128jca 554 1 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ∧ (𝐹𝐶) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  +crp 11832  (,)cioo 12175  [,]cicc 12178  abscabs 13974  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-cncf 22681
This theorem is referenced by:  ivth  23223
  Copyright terms: Public domain W3C validator