MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmltpc Structured version   Visualization version   GIF version

Theorem pmltpc 23219
Description: Any function on the reals is either increasing, decreasing, or has a triple of points in a vee formation. (This theorem was created on demand by Mario Carneiro for the 6PCM conference in Bialystok, 1-Jul-2014.) (Contributed by Mario Carneiro, 1-Jul-2014.)
Assertion
Ref Expression
pmltpc ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝑦,𝐴   𝐹,𝑎,𝑏,𝑐,𝑥,𝑦

Proof of Theorem pmltpc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexanali 2998 . . . . . . . 8 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
21rexbii 3041 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3 rexnal 2995 . . . . . . 7 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
42, 3bitri 264 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5 rexanali 2998 . . . . . . . 8 (∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
65rexbii 3041 . . . . . . 7 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
7 rexnal 2995 . . . . . . . 8 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)))
8 breq1 4656 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
9 fveq2 6191 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
109breq2d 4665 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑤) ≤ (𝐹𝑧) ↔ (𝐹𝑤) ≤ (𝐹𝑥)))
118, 10imbi12d 334 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ (𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥))))
12 breq2 4657 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
13 fveq2 6191 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1413breq1d 4663 . . . . . . . . . 10 (𝑤 = 𝑦 → ((𝐹𝑤) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
1512, 14imbi12d 334 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑥𝑤 → (𝐹𝑤) ≤ (𝐹𝑥)) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
1611, 15cbvral2v 3179 . . . . . . . 8 (∀𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
177, 16xchbinx 324 . . . . . . 7 (∃𝑧𝐴 ¬ ∀𝑤𝐴 (𝑧𝑤 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
186, 17bitri 264 . . . . . 6 (∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
194, 18anbi12i 733 . . . . 5 ((∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
20 reeanv 3107 . . . . 5 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑧𝐴𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
21 ioran 511 . . . . 5 (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ↔ (¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
2219, 20, 213bitr4i 292 . . . 4 (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ ¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
23 reeanv 3107 . . . . . 6 (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) ↔ (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))))
24 simplll 798 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹))
2524simpld 475 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐹 ∈ (ℝ ↑pm ℝ))
2624simprd 479 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝐴 ⊆ dom 𝐹)
27 simpllr 799 . . . . . . . . . 10 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → (𝑥𝐴𝑧𝐴))
2827simpld 475 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝐴)
29 simplrl 800 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑦𝐴)
3027simprd 479 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝐴)
31 simplrr 801 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑤𝐴)
32 simprll 802 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑥𝑦)
33 simprrl 804 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → 𝑧𝑤)
34 simprlr 803 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑥) ≤ (𝐹𝑦))
35 simprrr 805 . . . . . . . . 9 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ¬ (𝐹𝑤) ≤ (𝐹𝑧))
3625, 26, 28, 29, 30, 31, 32, 33, 34, 35pmltpclem2 23218 . . . . . . . 8 (((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) ∧ ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧)))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐)))))
3736ex 450 . . . . . . 7 ((((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) ∧ (𝑦𝐴𝑤𝐴)) → (((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3837rexlimdvva 3038 . . . . . 6 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐴𝑤𝐴 ((𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
3923, 38syl5bir 233 . . . . 5 (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4039rexlimdvva 3038 . . . 4 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑥𝐴𝑧𝐴 (∃𝑦𝐴 (𝑥𝑦 ∧ ¬ (𝐹𝑥) ≤ (𝐹𝑦)) ∧ ∃𝑤𝐴 (𝑧𝑤 ∧ ¬ (𝐹𝑤) ≤ (𝐹𝑧))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4122, 40syl5bir 233 . . 3 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (¬ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4241orrd 393 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
43 df-3or 1038 . 2 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))) ↔ ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
4442, 43sylibr 224 1 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ∨ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∨ ∃𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎 < 𝑏𝑏 < 𝑐 ∧ (((𝐹𝑎) < (𝐹𝑏) ∧ (𝐹𝑐) < (𝐹𝑏)) ∨ ((𝐹𝑏) < (𝐹𝑎) ∧ (𝐹𝑏) < (𝐹𝑐))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1036  w3a 1037  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  dom cdm 5114  cfv 5888  (class class class)co 6650  pm cpm 7858  cr 9935   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator