![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 2966 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 3678 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 224 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-in 3581 df-ss 3588 |
This theorem is referenced by: sess1 5082 suppfnss 7320 suppssov1 7327 suppssfv 7331 harword 8470 mrcss 16276 ablfac1b 18469 mptscmfsupp0 18928 lspss 18984 aspss 19332 dsmmacl 20085 dsmmsubg 20087 dsmmlss 20088 scmatdmat 20321 clsss 20858 lfinpfin 21327 qustgpopn 21923 metss2lem 22316 equivcau 23098 rrxmvallem 23187 ovolsslem 23252 itg2monolem1 23517 lgamucov 24764 sqff1o 24908 musum 24917 cusgrfilem1 26351 locfinreflem 29907 omsmon 30360 orvclteinc 30537 fin2solem 33395 poimirlem26 33435 poimirlem27 33436 cnambfre 33458 pclssN 35180 2polssN 35201 dihglblem3N 36584 dochss 36654 mapdordlem2 36926 nzss 38516 rmsuppss 42151 mndpsuppss 42152 scmsuppss 42153 |
Copyright terms: Public domain | W3C validator |