Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegl Structured version   Visualization version   GIF version

Theorem lflnegl 34363
Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 34433, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
lflnegl.p + = (+g𝑅)
lflnegl.o 0 = (0g𝑅)
Assertion
Ref Expression
lflnegl (𝜑 → (𝑁𝑓 + 𝐺) = (𝑉 × { 0 }))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   + (𝑥)   𝐹(𝑥)   𝑁(𝑥)   0 (𝑥)

Proof of Theorem lflnegl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lflnegcl.v . . . 4 𝑉 = (Base‘𝑊)
2 fvex 6201 . . . 4 (Base‘𝑊) ∈ V
31, 2eqeltri 2697 . . 3 𝑉 ∈ V
43a1i 11 . 2 (𝜑𝑉 ∈ V)
5 lflnegcl.w . . 3 (𝜑𝑊 ∈ LMod)
6 lflnegcl.g . . 3 (𝜑𝐺𝐹)
7 lflnegcl.r . . . 4 𝑅 = (Scalar‘𝑊)
8 eqid 2622 . . . 4 (Base‘𝑅) = (Base‘𝑅)
9 lflnegcl.f . . . 4 𝐹 = (LFnl‘𝑊)
107, 8, 1, 9lflf 34350 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
115, 6, 10syl2anc 693 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
12 lflnegl.o . . . 4 0 = (0g𝑅)
13 fvex 6201 . . . 4 (0g𝑅) ∈ V
1412, 13eqeltri 2697 . . 3 0 ∈ V
1514a1i 11 . 2 (𝜑0 ∈ V)
16 lflnegcl.i . . . 4 𝐼 = (invg𝑅)
177lmodring 18871 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
18 ringgrp 18552 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
195, 17, 183syl 18 . . . 4 (𝜑𝑅 ∈ Grp)
208, 16, 19grpinvf1o 17485 . . 3 (𝜑𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅))
21 f1of 6137 . . 3 (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅))
2220, 21syl 17 . 2 (𝜑𝐼:(Base‘𝑅)⟶(Base‘𝑅))
23 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2423a1i 11 . 2 (𝜑𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥))))
25 lflnegl.p . . . 4 + = (+g𝑅)
268, 25, 12, 16grplinv 17468 . . 3 ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
2719, 26sylan 488 . 2 ((𝜑𝑦 ∈ (Base‘𝑅)) → ((𝐼𝑦) + 𝑦) = 0 )
284, 11, 15, 22, 24, 27caofinvl 6924 1 (𝜑 → (𝑁𝑓 + 𝐺) = (𝑉 × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cmpt 4729   × cxp 5112  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  Ringcrg 18547  LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  ldualgrplem  34432
  Copyright terms: Public domain W3C validator