| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflnegl | Structured version Visualization version GIF version | ||
| Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp 34433, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflnegcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflnegcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflnegcl.i | ⊢ 𝐼 = (invg‘𝑅) |
| lflnegcl.n | ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) |
| lflnegcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflnegcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflnegcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lflnegl.p | ⊢ + = (+g‘𝑅) |
| lflnegl.o | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lflnegl | ⊢ (𝜑 → (𝑁 ∘𝑓 + 𝐺) = (𝑉 × { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflnegcl.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | fvex 6201 | . . . 4 ⊢ (Base‘𝑊) ∈ V | |
| 3 | 1, 2 | eqeltri 2697 | . . 3 ⊢ 𝑉 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 5 | lflnegcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | lflnegcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | lflnegcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 8 | eqid 2622 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | lflnegcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 10 | 7, 8, 1, 9 | lflf 34350 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
| 11 | 5, 6, 10 | syl2anc 693 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
| 12 | lflnegl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 13 | fvex 6201 | . . . 4 ⊢ (0g‘𝑅) ∈ V | |
| 14 | 12, 13 | eqeltri 2697 | . . 3 ⊢ 0 ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
| 16 | lflnegcl.i | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
| 17 | 7 | lmodring 18871 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | ringgrp 18552 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 19 | 5, 17, 18 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 20 | 8, 16, 19 | grpinvf1o 17485 | . . 3 ⊢ (𝜑 → 𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
| 21 | f1of 6137 | . . 3 ⊢ (𝐼:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
| 23 | lflnegcl.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥))) | |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝑉 ↦ (𝐼‘(𝐺‘𝑥)))) |
| 25 | lflnegl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 26 | 8, 25, 12, 16 | grplinv 17468 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
| 27 | 19, 26 | sylan 488 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝐼‘𝑦) + 𝑦) = 0 ) |
| 28 | 4, 11, 15, 22, 24, 27 | caofinvl 6924 | 1 ⊢ (𝜑 → (𝑁 ∘𝑓 + 𝐺) = (𝑉 × { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {csn 4177 ↦ cmpt 4729 × cxp 5112 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ∘𝑓 cof 6895 Basecbs 15857 +gcplusg 15941 Scalarcsca 15944 0gc0g 16100 Grpcgrp 17422 invgcminusg 17423 Ringcrg 18547 LModclmod 18863 LFnlclfn 34344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-map 7859 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-ring 18549 df-lmod 18865 df-lfl 34345 |
| This theorem is referenced by: ldualgrplem 34432 |
| Copyright terms: Public domain | W3C validator |