Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvscl Structured version   Visualization version   GIF version

Theorem lflvscl 34364
Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
lflsccl.v 𝑉 = (Base‘𝑊)
lflsccl.d 𝐷 = (Scalar‘𝑊)
lflsccl.k 𝐾 = (Base‘𝐷)
lflsccl.t · = (.r𝐷)
lflsccl.f 𝐹 = (LFnl‘𝑊)
lflsccl.w (𝜑𝑊 ∈ LMod)
lflsccl.g (𝜑𝐺𝐹)
lflsccl.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lflvscl (𝜑 → (𝐺𝑓 · (𝑉 × {𝑅})) ∈ 𝐹)

Proof of Theorem lflvscl
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflsccl.v . . 3 𝑉 = (Base‘𝑊)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑊))
3 eqidd 2623 . 2 (𝜑 → (+g𝑊) = (+g𝑊))
4 lflsccl.d . . 3 𝐷 = (Scalar‘𝑊)
54a1i 11 . 2 (𝜑𝐷 = (Scalar‘𝑊))
6 eqidd 2623 . 2 (𝜑 → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lflsccl.k . . 3 𝐾 = (Base‘𝐷)
87a1i 11 . 2 (𝜑𝐾 = (Base‘𝐷))
9 eqidd 2623 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
10 lflsccl.t . . 3 · = (.r𝐷)
1110a1i 11 . 2 (𝜑· = (.r𝐷))
12 lflsccl.f . . 3 𝐹 = (LFnl‘𝑊)
1312a1i 11 . 2 (𝜑𝐹 = (LFnl‘𝑊))
14 lflsccl.w . . . . 5 (𝜑𝑊 ∈ LMod)
154lmodring 18871 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝐷 ∈ Ring)
177, 10ringcl 18561 . . . . 5 ((𝐷 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥 · 𝑦) ∈ 𝐾)
18173expb 1266 . . . 4 ((𝐷 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
1916, 18sylan 488 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
20 lflsccl.g . . . 4 (𝜑𝐺𝐹)
214, 7, 1, 12lflf 34350 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
2214, 20, 21syl2anc 693 . . 3 (𝜑𝐺:𝑉𝐾)
23 lflsccl.r . . . 4 (𝜑𝑅𝐾)
24 fconst6g 6094 . . . 4 (𝑅𝐾 → (𝑉 × {𝑅}):𝑉𝐾)
2523, 24syl 17 . . 3 (𝜑 → (𝑉 × {𝑅}):𝑉𝐾)
26 fvex 6201 . . . . 5 (Base‘𝑊) ∈ V
271, 26eqeltri 2697 . . . 4 𝑉 ∈ V
2827a1i 11 . . 3 (𝜑𝑉 ∈ V)
29 inidm 3822 . . 3 (𝑉𝑉) = 𝑉
3019, 22, 25, 28, 28, 29off 6912 . 2 (𝜑 → (𝐺𝑓 · (𝑉 × {𝑅})):𝑉𝐾)
3114adantr 481 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑊 ∈ LMod)
3220adantr 481 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐺𝐹)
33 simpr1 1067 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑟𝐾)
34 simpr2 1068 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
35 simpr3 1069 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
36 eqid 2622 . . . . . . 7 (+g𝑊) = (+g𝑊)
37 eqid 2622 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
38 eqid 2622 . . . . . . 7 (+g𝐷) = (+g𝐷)
391, 36, 4, 37, 7, 38, 10, 12lfli 34348 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
4031, 32, 33, 34, 35, 39syl113anc 1338 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
4140oveq1d 6665 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅))
4216adantr 481 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐷 ∈ Ring)
434, 7, 1, 12lflcl 34351 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
4431, 32, 34, 43syl3anc 1326 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑥) ∈ 𝐾)
457, 10ringcl 18561 . . . . . 6 ((𝐷 ∈ Ring ∧ 𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
4642, 33, 44, 45syl3anc 1326 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
474, 7, 1, 12lflcl 34351 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ 𝐾)
4831, 32, 35, 47syl3anc 1326 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑦) ∈ 𝐾)
4923adantr 481 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑅𝐾)
507, 38, 10ringdir 18567 . . . . 5 ((𝐷 ∈ Ring ∧ ((𝑟 · (𝐺𝑥)) ∈ 𝐾 ∧ (𝐺𝑦) ∈ 𝐾𝑅𝐾)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
5142, 46, 48, 49, 50syl13anc 1328 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
527, 10ringass 18564 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾𝑅𝐾)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5342, 33, 44, 49, 52syl13anc 1328 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5453oveq1d 6665 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
5541, 51, 543eqtrd 2660 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
561, 4, 37, 7lmodvscl 18880 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟𝐾𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
5731, 33, 34, 56syl3anc 1326 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
581, 36lmodvacl 18877 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5931, 57, 35, 58syl3anc 1326 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
60 ffn 6045 . . . . . 6 (𝐺:𝑉𝐾𝐺 Fn 𝑉)
6122, 60syl 17 . . . . 5 (𝜑𝐺 Fn 𝑉)
62 eqidd 2623 . . . . 5 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)))
6328, 23, 61, 62ofc2 6921 . . . 4 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
6459, 63syldan 487 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
65 eqidd 2623 . . . . . . 7 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
6628, 23, 61, 65ofc2 6921 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6734, 66syldan 487 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6867oveq2d 6666 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑥)) = (𝑟 · ((𝐺𝑥) · 𝑅)))
69 eqidd 2623 . . . . . 6 ((𝜑𝑦𝑉) → (𝐺𝑦) = (𝐺𝑦))
7028, 23, 61, 69ofc2 6921 . . . . 5 ((𝜑𝑦𝑉) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
7135, 70syldan 487 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
7268, 71oveq12d 6668 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑦)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
7355, 64, 723eqtr4d 2666 . 2 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺𝑓 · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · ((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺𝑓 · (𝑉 × {𝑅}))‘𝑦)))
742, 3, 5, 6, 8, 9, 11, 13, 30, 73, 14islfld 34349 1 (𝜑 → (𝐺𝑓 · (𝑉 × {𝑅})) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  LModclmod 18863  LFnlclfn 34344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-lmod 18865  df-lfl 34345
This theorem is referenced by:  lkrsc  34384  lfl1dim  34408  ldualvscl  34426  ldualvsass  34428
  Copyright terms: Public domain W3C validator