![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp0lt | Structured version Visualization version GIF version |
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.) |
Ref | Expression |
---|---|
lhp0lt.s | ⊢ < = (lt‘𝐾) |
lhp0lt.z | ⊢ 0 = (0.‘𝐾) |
lhp0lt.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhp0lt | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 < 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhp0lt.s | . . 3 ⊢ < = (lt‘𝐾) | |
2 | eqid 2622 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | lhp0lt.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpexlt 35288 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊) |
5 | simp1l 1085 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ HL) | |
6 | hlop 34649 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
7 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
8 | lhp0lt.z | . . . . . . 7 ⊢ 0 = (0.‘𝐾) | |
9 | 7, 8 | op0cl 34471 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
10 | 5, 6, 9 | 3syl 18 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ∈ (Base‘𝐾)) |
11 | 7, 2 | atbase 34576 | . . . . . 6 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
12 | 11 | 3ad2ant2 1083 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Base‘𝐾)) |
13 | simp2 1062 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 ∈ (Atoms‘𝐾)) | |
14 | eqid 2622 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
15 | 8, 14, 2 | atcvr0 34575 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → 0 ( ⋖ ‘𝐾)𝑝) |
16 | 5, 13, 15 | syl2anc 693 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 ( ⋖ ‘𝐾)𝑝) |
17 | 7, 1, 14 | cvrlt 34557 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑝) → 0 < 𝑝) |
18 | 5, 10, 12, 16, 17 | syl31anc 1329 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑝) |
19 | simp3 1063 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑝 < 𝑊) | |
20 | hlpos 34652 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
21 | 5, 20 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝐾 ∈ Poset) |
22 | simp1r 1086 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ 𝐻) | |
23 | 7, 3 | lhpbase 35284 | . . . . . 6 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 𝑊 ∈ (Base‘𝐾)) |
25 | 7, 1 | plttr 16970 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (( 0 < 𝑝 ∧ 𝑝 < 𝑊) → 0 < 𝑊)) |
26 | 21, 10, 12, 24, 25 | syl13anc 1328 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → (( 0 < 𝑝 ∧ 𝑝 < 𝑊) → 0 < 𝑊)) |
27 | 18, 19, 26 | mp2and 715 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑝 ∈ (Atoms‘𝐾) ∧ 𝑝 < 𝑊) → 0 < 𝑊) |
28 | 27 | rexlimdv3a 3033 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑝 ∈ (Atoms‘𝐾)𝑝 < 𝑊 → 0 < 𝑊)) |
29 | 4, 28 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 < 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 class class class wbr 4653 ‘cfv 5888 Basecbs 15857 Posetcpo 16940 ltcplt 16941 0.cp0 17037 OPcops 34459 ⋖ ccvr 34549 Atomscatm 34550 HLchlt 34637 LHypclh 35270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
This theorem is referenced by: lhpn0 35290 |
Copyright terms: Public domain | W3C validator |