MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Visualization version   GIF version

Theorem plttr 16970
Description: The less-than relation is transitive. (psstr 3711 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
plttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2622 . . . . . 6 (le‘𝐾) = (le‘𝐾)
2 pltnlt.s . . . . . 6 < = (lt‘𝐾)
31, 2pltle 16961 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
433adant3r3 1276 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
51, 2pltle 16961 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
653adant3r1 1274 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
7 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
87, 1postr 16953 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍))
94, 6, 8syl2and 500 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍))
107, 2pltn2lp 16969 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
11103adant3r3 1276 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
12 breq2 4657 . . . . . . 7 (𝑋 = 𝑍 → (𝑌 < 𝑋𝑌 < 𝑍))
1312anbi2d 740 . . . . . 6 (𝑋 = 𝑍 → ((𝑋 < 𝑌𝑌 < 𝑋) ↔ (𝑋 < 𝑌𝑌 < 𝑍)))
1413notbid 308 . . . . 5 (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1511, 14syl5ibcom 235 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1615necon2ad 2809 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋𝑍))
179, 16jcad 555 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍𝑋𝑍)))
181, 2pltval 16960 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
19183adant3r2 1275 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
2017, 19sylibrd 249 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  Posetcpo 16940  ltcplt 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-preset 16928  df-poset 16946  df-plt 16958
This theorem is referenced by:  pltletr  16971  plelttr  16972  pospo  16973  archiabllem2c  29749  ofldchr  29814  hlhgt2  34675  hl0lt1N  34676  lhp0lt  35289
  Copyright terms: Public domain W3C validator