![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plttr | Structured version Visualization version GIF version |
Description: The less-than relation is transitive. (psstr 3711 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltnlt.b | ⊢ 𝐵 = (Base‘𝐾) |
pltnlt.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | pltnlt.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltle 16961 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
4 | 3 | 3adant3r3 1276 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
5 | 1, 2 | pltle 16961 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
6 | 5 | 3adant3r1 1274 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
7 | pltnlt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 7, 1 | postr 16953 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍)) |
9 | 4, 6, 8 | syl2and 500 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍)) |
10 | 7, 2 | pltn2lp 16969 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
11 | 10 | 3adant3r3 1276 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
12 | breq2 4657 | . . . . . . 7 ⊢ (𝑋 = 𝑍 → (𝑌 < 𝑋 ↔ 𝑌 < 𝑍)) | |
13 | 12 | anbi2d 740 | . . . . . 6 ⊢ (𝑋 = 𝑍 → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
14 | 13 | notbid 308 | . . . . 5 ⊢ (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
15 | 11, 14 | syl5ibcom 235 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
16 | 15 | necon2ad 2809 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 ≠ 𝑍)) |
17 | 9, 16 | jcad 555 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
18 | 1, 2 | pltval 16960 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
19 | 18 | 3adant3r2 1275 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
20 | 17, 19 | sylibrd 249 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 Basecbs 15857 lecple 15948 Posetcpo 16940 ltcplt 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-preset 16928 df-poset 16946 df-plt 16958 |
This theorem is referenced by: pltletr 16971 plelttr 16972 pospo 16973 archiabllem2c 29749 ofldchr 29814 hlhgt2 34675 hl0lt1N 34676 lhp0lt 35289 |
Copyright terms: Public domain | W3C validator |