Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp0lt Structured version   Visualization version   Unicode version

Theorem lhp0lt 35289
Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012.)
Hypotheses
Ref Expression
lhp0lt.s  |-  .<  =  ( lt `  K )
lhp0lt.z  |-  .0.  =  ( 0. `  K )
lhp0lt.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
lhp0lt  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  .<  W )

Proof of Theorem lhp0lt
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 lhp0lt.s . . 3  |-  .<  =  ( lt `  K )
2 eqid 2622 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 lhp0lt.h . . 3  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexlt 35288 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K ) p 
.<  W )
5 simp1l 1085 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  K  e.  HL )
6 hlop 34649 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
7 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 lhp0lt.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
97, 8op0cl 34471 . . . . . 6  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
105, 6, 93syl 18 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  .0.  e.  ( Base `  K
) )
117, 2atbase 34576 . . . . . 6  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  ( Base `  K )
)
12113ad2ant2 1083 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  p  e.  ( Base `  K ) )
13 simp2 1062 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  p  e.  ( Atoms `  K ) )
14 eqid 2622 . . . . . . 7  |-  (  <o  `  K )  =  ( 
<o  `  K )
158, 14, 2atcvr0 34575 . . . . . 6  |-  ( ( K  e.  HL  /\  p  e.  ( Atoms `  K ) )  ->  .0.  (  <o  `  K
) p )
165, 13, 15syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  .0.  (  <o  `  K
) p )
177, 1, 14cvrlt 34557 . . . . 5  |-  ( ( ( K  e.  HL  /\  .0.  e.  ( Base `  K )  /\  p  e.  ( Base `  K
) )  /\  .0.  (  <o  `  K )
p )  ->  .0.  .<  p )
185, 10, 12, 16, 17syl31anc 1329 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  .0.  .<  p )
19 simp3 1063 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  p  .<  W )
20 hlpos 34652 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Poset )
215, 20syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  K  e.  Poset )
22 simp1r 1086 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  W  e.  H )
237, 3lhpbase 35284 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2422, 23syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  W  e.  ( Base `  K ) )
257, 1plttr 16970 . . . . 5  |-  ( ( K  e.  Poset  /\  (  .0.  e.  ( Base `  K
)  /\  p  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( (  .0.  .<  p  /\  p  .<  W )  ->  .0.  .<  W ) )
2621, 10, 12, 24, 25syl13anc 1328 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  -> 
( (  .0.  .<  p  /\  p  .<  W )  ->  .0.  .<  W ) )
2718, 19, 26mp2and 715 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  p  e.  (
Atoms `  K )  /\  p  .<  W )  ->  .0.  .<  W )
2827rexlimdv3a 3033 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( E. p  e.  ( Atoms `  K )
p  .<  W  ->  .0.  .<  W ) )
294, 28mpd 15 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .0.  .<  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653   ` cfv 5888   Basecbs 15857   Posetcpo 16940   ltcplt 16941   0.cp0 17037   OPcops 34459    <o ccvr 34549   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  lhpn0  35290
  Copyright terms: Public domain W3C validator