Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3 Structured version   Visualization version   GIF version

Theorem lhpexle3 35298
Description: There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle2 35296 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5 3anass 1042 . . . . 5 ((𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
65rexbii 3041 . . . 4 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
74, 6sylib 208 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
81, 2, 3lhpexle2 35296 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
98adantr 481 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
10 3anass 1042 . . . . . . 7 ((𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
1110rexbii 3041 . . . . . 6 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
129, 11sylib 208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
131, 2, 3lhpexle2 35296 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍))
14 3anass 1042 . . . . . . . . . . 11 ((𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1514rexbii 3041 . . . . . . . . . 10 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1613, 15sylib 208 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
17163ad2ant1 1082 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
18 simpl1 1064 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl3l 1116 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌𝐴)
20 simpl2l 1114 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍𝐴)
21 simprl 794 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
22 simpl3r 1117 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌 𝑊)
23 simpl2r 1115 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍 𝑊)
24 simprr 796 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋 𝑊)
251, 2, 3lhpexle3lem 35297 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑍𝐴𝑋𝐴) ∧ (𝑌 𝑊𝑍 𝑊𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1349 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
27 df-3an 1039 . . . . . . . . . . . 12 ((𝑝𝑌𝑝𝑍𝑝𝑋) ↔ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
2827anbi2i 730 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
29 3anass 1042 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
3028, 29bitr4i 267 . . . . . . . . . 10 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3130rexbii 3041 . . . . . . . . 9 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3226, 31sylib 208 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3317, 32lhpexle1lem 35293 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
34 an31 841 . . . . . . . . . 10 (((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3534anbi2i 730 . . . . . . . . 9 ((𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
36 3anass 1042 . . . . . . . . 9 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
3735, 29, 363bitr4i 292 . . . . . . . 8 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3837rexbii 3041 . . . . . . 7 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3933, 38sylib 208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
40393expa 1265 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
4112, 40lhpexle1lem 35293 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
42 an32 839 . . . . . . 7 (((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4342anbi2i 730 . . . . . 6 ((𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
44 3anass 1042 . . . . . 6 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
4543, 36, 443bitr4i 292 . . . . 5 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4645rexbii 3041 . . . 4 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4741, 46sylib 208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
487, 47lhpexle1lem 35293 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
49 df-3an 1039 . . . . 5 ((𝑝𝑋𝑝𝑌𝑝𝑍) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
5049anbi2i 730 . . . 4 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
5144, 50bitr4i 267 . . 3 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5251rexbii 3041 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5348, 52sylib 208 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  lecple 15948  Atomscatm 34550  HLchlt 34637  LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  cdlemftr3  35853
  Copyright terms: Public domain W3C validator