MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsssuc Structured version   Visualization version   GIF version

Theorem limsssuc 7050
Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limsssuc (Lim 𝐴 → (𝐴𝐵𝐴 ⊆ suc 𝐵))

Proof of Theorem limsssuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssucid 5802 . . 3 𝐵 ⊆ suc 𝐵
2 sstr2 3610 . . 3 (𝐴𝐵 → (𝐵 ⊆ suc 𝐵𝐴 ⊆ suc 𝐵))
31, 2mpi 20 . 2 (𝐴𝐵𝐴 ⊆ suc 𝐵)
4 eleq1 2689 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
54biimpcd 239 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 = 𝐵𝐵𝐴))
6 limsuc 7049 . . . . . . . . . . . . . 14 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
76biimpa 501 . . . . . . . . . . . . 13 ((Lim 𝐴𝐵𝐴) → suc 𝐵𝐴)
8 limord 5784 . . . . . . . . . . . . . . . 16 (Lim 𝐴 → Ord 𝐴)
98adantr 481 . . . . . . . . . . . . . . 15 ((Lim 𝐴𝐵𝐴) → Ord 𝐴)
10 ordelord 5745 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
118, 10sylan 488 . . . . . . . . . . . . . . . 16 ((Lim 𝐴𝐵𝐴) → Ord 𝐵)
12 ordsuc 7014 . . . . . . . . . . . . . . . 16 (Ord 𝐵 ↔ Ord suc 𝐵)
1311, 12sylib 208 . . . . . . . . . . . . . . 15 ((Lim 𝐴𝐵𝐴) → Ord suc 𝐵)
14 ordtri1 5756 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵𝐴))
159, 13, 14syl2anc 693 . . . . . . . . . . . . . 14 ((Lim 𝐴𝐵𝐴) → (𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵𝐴))
1615con2bid 344 . . . . . . . . . . . . 13 ((Lim 𝐴𝐵𝐴) → (suc 𝐵𝐴 ↔ ¬ 𝐴 ⊆ suc 𝐵))
177, 16mpbid 222 . . . . . . . . . . . 12 ((Lim 𝐴𝐵𝐴) → ¬ 𝐴 ⊆ suc 𝐵)
1817ex 450 . . . . . . . . . . 11 (Lim 𝐴 → (𝐵𝐴 → ¬ 𝐴 ⊆ suc 𝐵))
195, 18sylan9r 690 . . . . . . . . . 10 ((Lim 𝐴𝑥𝐴) → (𝑥 = 𝐵 → ¬ 𝐴 ⊆ suc 𝐵))
2019con2d 129 . . . . . . . . 9 ((Lim 𝐴𝑥𝐴) → (𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵))
2120ex 450 . . . . . . . 8 (Lim 𝐴 → (𝑥𝐴 → (𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵)))
2221com23 86 . . . . . . 7 (Lim 𝐴 → (𝐴 ⊆ suc 𝐵 → (𝑥𝐴 → ¬ 𝑥 = 𝐵)))
2322imp31 448 . . . . . 6 (((Lim 𝐴𝐴 ⊆ suc 𝐵) ∧ 𝑥𝐴) → ¬ 𝑥 = 𝐵)
24 ssel2 3598 . . . . . . . . . 10 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → 𝑥 ∈ suc 𝐵)
25 vex 3203 . . . . . . . . . . 11 𝑥 ∈ V
2625elsuc 5794 . . . . . . . . . 10 (𝑥 ∈ suc 𝐵 ↔ (𝑥𝐵𝑥 = 𝐵))
2724, 26sylib 208 . . . . . . . . 9 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → (𝑥𝐵𝑥 = 𝐵))
2827ord 392 . . . . . . . 8 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → (¬ 𝑥𝐵𝑥 = 𝐵))
2928con1d 139 . . . . . . 7 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → (¬ 𝑥 = 𝐵𝑥𝐵))
3029adantll 750 . . . . . 6 (((Lim 𝐴𝐴 ⊆ suc 𝐵) ∧ 𝑥𝐴) → (¬ 𝑥 = 𝐵𝑥𝐵))
3123, 30mpd 15 . . . . 5 (((Lim 𝐴𝐴 ⊆ suc 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
3231ex 450 . . . 4 ((Lim 𝐴𝐴 ⊆ suc 𝐵) → (𝑥𝐴𝑥𝐵))
3332ssrdv 3609 . . 3 ((Lim 𝐴𝐴 ⊆ suc 𝐵) → 𝐴𝐵)
3433ex 450 . 2 (Lim 𝐴 → (𝐴 ⊆ suc 𝐵𝐴𝐵))
353, 34impbid2 216 1 (Lim 𝐴 → (𝐴𝐵𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wss 3574  Ord word 5722  Lim wlim 5724  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  cardlim  8798
  Copyright terms: Public domain W3C validator