| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsssuc | Structured version Visualization version Unicode version | ||
| Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| limsssuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid 5802 |
. . 3
| |
| 2 | sstr2 3610 |
. . 3
| |
| 3 | 1, 2 | mpi 20 |
. 2
|
| 4 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 5 | 4 | biimpcd 239 |
. . . . . . . . . . 11
|
| 6 | limsuc 7049 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | biimpa 501 |
. . . . . . . . . . . . 13
|
| 8 | limord 5784 |
. . . . . . . . . . . . . . . 16
| |
| 9 | 8 | adantr 481 |
. . . . . . . . . . . . . . 15
|
| 10 | ordelord 5745 |
. . . . . . . . . . . . . . . . 17
| |
| 11 | 8, 10 | sylan 488 |
. . . . . . . . . . . . . . . 16
|
| 12 | ordsuc 7014 |
. . . . . . . . . . . . . . . 16
| |
| 13 | 11, 12 | sylib 208 |
. . . . . . . . . . . . . . 15
|
| 14 | ordtri1 5756 |
. . . . . . . . . . . . . . 15
| |
| 15 | 9, 13, 14 | syl2anc 693 |
. . . . . . . . . . . . . 14
|
| 16 | 15 | con2bid 344 |
. . . . . . . . . . . . 13
|
| 17 | 7, 16 | mpbid 222 |
. . . . . . . . . . . 12
|
| 18 | 17 | ex 450 |
. . . . . . . . . . 11
|
| 19 | 5, 18 | sylan9r 690 |
. . . . . . . . . 10
|
| 20 | 19 | con2d 129 |
. . . . . . . . 9
|
| 21 | 20 | ex 450 |
. . . . . . . 8
|
| 22 | 21 | com23 86 |
. . . . . . 7
|
| 23 | 22 | imp31 448 |
. . . . . 6
|
| 24 | ssel2 3598 |
. . . . . . . . . 10
| |
| 25 | vex 3203 |
. . . . . . . . . . 11
| |
| 26 | 25 | elsuc 5794 |
. . . . . . . . . 10
|
| 27 | 24, 26 | sylib 208 |
. . . . . . . . 9
|
| 28 | 27 | ord 392 |
. . . . . . . 8
|
| 29 | 28 | con1d 139 |
. . . . . . 7
|
| 30 | 29 | adantll 750 |
. . . . . 6
|
| 31 | 23, 30 | mpd 15 |
. . . . 5
|
| 32 | 31 | ex 450 |
. . . 4
|
| 33 | 32 | ssrdv 3609 |
. . 3
|
| 34 | 33 | ex 450 |
. 2
|
| 35 | 3, 34 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 |
| This theorem is referenced by: cardlim 8798 |
| Copyright terms: Public domain | W3C validator |