MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsghm Structured version   Visualization version   GIF version

Theorem lmodvsghm 18924
Description: Scalar multiplication of the vector space by a fixed scalar is an automorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
lmodvsghm.v 𝑉 = (Base‘𝑊)
lmodvsghm.f 𝐹 = (Scalar‘𝑊)
lmodvsghm.s · = ( ·𝑠𝑊)
lmodvsghm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsghm ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, ·   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lmodvsghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvsghm.v . 2 𝑉 = (Base‘𝑊)
2 eqid 2622 . 2 (+g𝑊) = (+g𝑊)
3 lmodgrp 18870 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
43adantr 481 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → 𝑊 ∈ Grp)
5 lmodvsghm.f . . . . 5 𝐹 = (Scalar‘𝑊)
6 lmodvsghm.s . . . . 5 · = ( ·𝑠𝑊)
7 lmodvsghm.k . . . . 5 𝐾 = (Base‘𝐹)
81, 5, 6, 7lmodvscl 18880 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑥𝑉) → (𝑅 · 𝑥) ∈ 𝑉)
983expa 1265 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ 𝑥𝑉) → (𝑅 · 𝑥) ∈ 𝑉)
10 eqid 2622 . . 3 (𝑥𝑉 ↦ (𝑅 · 𝑥)) = (𝑥𝑉 ↦ (𝑅 · 𝑥))
119, 10fmptd 6385 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)):𝑉𝑉)
121, 2, 5, 6, 7lmodvsdi 18886 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑦𝑉𝑧𝑉)) → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
13123exp2 1285 . . . 4 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑦𝑉 → (𝑧𝑉 → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧))))))
1413imp43 621 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (𝑅 · (𝑦(+g𝑊)𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
151, 2lmodvacl 18877 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑦𝑉𝑧𝑉) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
16153expb 1266 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
1716adantlr 751 . . . 4 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (𝑦(+g𝑊)𝑧) ∈ 𝑉)
18 oveq2 6658 . . . . 5 (𝑥 = (𝑦(+g𝑊)𝑧) → (𝑅 · 𝑥) = (𝑅 · (𝑦(+g𝑊)𝑧)))
19 ovex 6678 . . . . 5 (𝑅 · (𝑦(+g𝑊)𝑧)) ∈ V
2018, 10, 19fvmpt 6282 . . . 4 ((𝑦(+g𝑊)𝑧) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (𝑅 · (𝑦(+g𝑊)𝑧)))
2117, 20syl 17 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (𝑅 · (𝑦(+g𝑊)𝑧)))
22 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝑅 · 𝑥) = (𝑅 · 𝑦))
23 ovex 6678 . . . . . 6 (𝑅 · 𝑦) ∈ V
2422, 10, 23fvmpt 6282 . . . . 5 (𝑦𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦) = (𝑅 · 𝑦))
25 oveq2 6658 . . . . . 6 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
26 ovex 6678 . . . . . 6 (𝑅 · 𝑧) ∈ V
2725, 10, 26fvmpt 6282 . . . . 5 (𝑧𝑉 → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧) = (𝑅 · 𝑧))
2824, 27oveqan12d 6669 . . . 4 ((𝑦𝑉𝑧𝑉) → (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
2928adantl 482 . . 3 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)) = ((𝑅 · 𝑦)(+g𝑊)(𝑅 · 𝑧)))
3014, 21, 293eqtr4d 2666 . 2 (((𝑊 ∈ LMod ∧ 𝑅𝐾) ∧ (𝑦𝑉𝑧𝑉)) → ((𝑥𝑉 ↦ (𝑅 · 𝑥))‘(𝑦(+g𝑊)𝑧)) = (((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑦)(+g𝑊)((𝑥𝑉 ↦ (𝑅 · 𝑥))‘𝑧)))
311, 1, 2, 2, 4, 4, 11, 30isghmd 17669 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑥𝑉 ↦ (𝑅 · 𝑥)) ∈ (𝑊 GrpHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  Grpcgrp 17422   GrpHom cghm 17657  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-lmod 18865
This theorem is referenced by:  gsumvsmul  18927  lmhmvsca  19045
  Copyright terms: Public domain W3C validator