MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmvsca Structured version   Visualization version   GIF version

Theorem lmhmvsca 19045
Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmhmvsca.v 𝑉 = (Base‘𝑀)
lmhmvsca.s · = ( ·𝑠𝑁)
lmhmvsca.j 𝐽 = (Scalar‘𝑁)
lmhmvsca.k 𝐾 = (Base‘𝐽)
Assertion
Ref Expression
lmhmvsca ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘𝑓 · 𝐹) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmvsca
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmvsca.v . 2 𝑉 = (Base‘𝑀)
2 eqid 2622 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 lmhmvsca.s . 2 · = ( ·𝑠𝑁)
4 eqid 2622 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 lmhmvsca.j . 2 𝐽 = (Scalar‘𝑁)
6 eqid 2622 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 19033 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
873ad2ant3 1084 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 19032 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod)
1093ad2ant3 1084 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod)
114, 5lmhmsca 19030 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐽 = (Scalar‘𝑀))
12113ad2ant3 1084 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐽 = (Scalar‘𝑀))
13 fvex 6201 . . . . . . 7 (Base‘𝑀) ∈ V
141, 13eqeltri 2697 . . . . . 6 𝑉 ∈ V
1514a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑉 ∈ V)
16 simpl2 1065 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → 𝐴𝐾)
17 eqid 2622 . . . . . . . 8 (Base‘𝑁) = (Base‘𝑁)
181, 17lmhmf 19034 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:𝑉⟶(Base‘𝑁))
19183ad2ant3 1084 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹:𝑉⟶(Base‘𝑁))
2019ffvelrnda 6359 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ (Base‘𝑁))
21 fconstmpt 5163 . . . . . 6 (𝑉 × {𝐴}) = (𝑣𝑉𝐴)
2221a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑉 × {𝐴}) = (𝑣𝑉𝐴))
2319feqmptd 6249 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 = (𝑣𝑉 ↦ (𝐹𝑣)))
2415, 16, 20, 22, 23offval2 6914 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘𝑓 · 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
25 eqidd 2623 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) = (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)))
26 oveq2 6658 . . . . 5 (𝑢 = (𝐹𝑣) → (𝐴 · 𝑢) = (𝐴 · (𝐹𝑣)))
2720, 23, 25, 26fmptco 6396 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
2824, 27eqtr4d 2659 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘𝑓 · 𝐹) = ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹))
29 simp2 1062 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐴𝐾)
30 lmhmvsca.k . . . . . 6 𝐾 = (Base‘𝐽)
3117, 5, 3, 30lmodvsghm 18924 . . . . 5 ((𝑁 ∈ LMod ∧ 𝐴𝐾) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
3210, 29, 31syl2anc 693 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
33 lmghm 19031 . . . . 5 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
34333ad2ant3 1084 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
35 ghmco 17680 . . . 4 (((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁) ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3632, 34, 35syl2anc 693 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3728, 36eqeltrd 2701 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘𝑓 · 𝐹) ∈ (𝑀 GrpHom 𝑁))
38 simpl1 1064 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐽 ∈ CRing)
39 simpl2 1065 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐴𝐾)
40 simprl 794 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
4112fveq2d 6195 . . . . . . . . 9 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (Base‘𝐽) = (Base‘(Scalar‘𝑀)))
4230, 41syl5eq 2668 . . . . . . . 8 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4342adantr 481 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4440, 43eleqtrrd 2704 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥𝐾)
45 eqid 2622 . . . . . . 7 (.r𝐽) = (.r𝐽)
4630, 45crngcom 18562 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝑥𝐾) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4738, 39, 44, 46syl3anc 1326 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4847oveq1d 6665 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)))
4910adantr 481 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑁 ∈ LMod)
5019adantr 481 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹:𝑉⟶(Base‘𝑁))
51 simprr 796 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑦𝑉)
5250, 51ffvelrnd 6360 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹𝑦) ∈ (Base‘𝑁))
5317, 5, 3, 30, 45lmodvsass 18888 . . . . 5 ((𝑁 ∈ LMod ∧ (𝐴𝐾𝑥𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5449, 39, 44, 52, 53syl13anc 1328 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5517, 5, 3, 30, 45lmodvsass 18888 . . . . 5 ((𝑁 ∈ LMod ∧ (𝑥𝐾𝐴𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5649, 44, 39, 52, 55syl13anc 1328 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5748, 54, 563eqtr3d 2664 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴 · (𝑥 · (𝐹𝑦))) = (𝑥 · (𝐴 · (𝐹𝑦))))
581, 4, 2, 6lmodvscl 18880 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
59583expb 1266 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
608, 59sylan 488 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
6114a1i 11 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑉 ∈ V)
62 ffn 6045 . . . . . . 7 (𝐹:𝑉⟶(Base‘𝑁) → 𝐹 Fn 𝑉)
6319, 62syl 17 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 Fn 𝑉)
6463adantr 481 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹 Fn 𝑉)
654, 6, 1, 2, 3lmhmlin 19035 . . . . . . . 8 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
66653expb 1266 . . . . . . 7 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
67663ad2antl3 1225 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6867adantr 481 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6961, 39, 64, 68ofc1 6920 . . . 4 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
7060, 69mpdan 702 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
71 eqidd 2623 . . . . . 6 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (𝐹𝑦) = (𝐹𝑦))
7261, 39, 64, 71ofc1 6920 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7351, 72mpdan 702 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7473oveq2d 6666 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥 · (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
7557, 70, 743eqtr4d 2666 . 2 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (((𝑉 × {𝐴}) ∘𝑓 · 𝐹)‘𝑦)))
761, 2, 3, 4, 5, 6, 8, 10, 12, 37, 75islmhmd 19039 1 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘𝑓 · 𝐹) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cmpt 4729   × cxp 5112  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945   GrpHom cghm 17657  CRingccrg 18548  LModclmod 18863   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-cring 18550  df-lmod 18865  df-lmhm 19022
This theorem is referenced by:  mendlmod  37763
  Copyright terms: Public domain W3C validator