![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumvsmul | Structured version Visualization version GIF version |
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 18607, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.) |
Ref | Expression |
---|---|
gsumvsmul.b | ⊢ 𝐵 = (Base‘𝑅) |
gsumvsmul.s | ⊢ 𝑆 = (Scalar‘𝑅) |
gsumvsmul.k | ⊢ 𝐾 = (Base‘𝑆) |
gsumvsmul.z | ⊢ 0 = (0g‘𝑅) |
gsumvsmul.p | ⊢ + = (+g‘𝑅) |
gsumvsmul.t | ⊢ · = ( ·𝑠 ‘𝑅) |
gsumvsmul.r | ⊢ (𝜑 → 𝑅 ∈ LMod) |
gsumvsmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumvsmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
gsumvsmul.y | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
gsumvsmul.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) |
Ref | Expression |
---|---|
gsumvsmul | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvsmul.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | gsumvsmul.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | gsumvsmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ LMod) | |
4 | lmodcmn 18911 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | cmnmnd 18208 | . . 3 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | gsumvsmul.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumvsmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | gsumvsmul.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑅) | |
11 | gsumvsmul.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑅) | |
12 | gsumvsmul.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
13 | 1, 10, 11, 12 | lmodvsghm 18924 | . . . 4 ⊢ ((𝑅 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅)) |
14 | 3, 9, 13 | syl2anc 693 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅)) |
15 | ghmmhm 17670 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅) → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅)) |
17 | gsumvsmul.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
18 | gsumvsmul.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) | |
19 | oveq2 6658 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
20 | oveq2 6658 | . 2 ⊢ (𝑦 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)) → (𝑋 · 𝑦) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) | |
21 | 1, 2, 5, 7, 8, 16, 17, 18, 19, 20 | gsummhm2 18339 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 finSupp cfsupp 8275 Basecbs 15857 +gcplusg 15941 Scalarcsca 15944 ·𝑠 cvsca 15945 0gc0g 16100 Σg cgsu 16101 Mndcmnd 17294 MndHom cmhm 17333 GrpHom cghm 17657 CMndccmn 18193 LModclmod 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 |
This theorem is referenced by: frlmup1 20137 lincscm 42219 lincresunit3lem2 42269 |
Copyright terms: Public domain | W3C validator |