MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsghm Structured version   Visualization version   Unicode version

Theorem lmodvsghm 18924
Description: Scalar multiplication of the vector space by a fixed scalar is an automorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
lmodvsghm.v  |-  V  =  ( Base `  W
)
lmodvsghm.f  |-  F  =  (Scalar `  W )
lmodvsghm.s  |-  .x.  =  ( .s `  W )
lmodvsghm.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
lmodvsghm  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
x  e.  V  |->  ( R  .x.  x ) )  e.  ( W 
GrpHom  W ) )
Distinct variable groups:    x, K    x, R    x,  .x.    x, V   
x, W
Allowed substitution hint:    F( x)

Proof of Theorem lmodvsghm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodvsghm.v . 2  |-  V  =  ( Base `  W
)
2 eqid 2622 . 2  |-  ( +g  `  W )  =  ( +g  `  W )
3 lmodgrp 18870 . . 3  |-  ( W  e.  LMod  ->  W  e. 
Grp )
43adantr 481 . 2  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  W  e.  Grp )
5 lmodvsghm.f . . . . 5  |-  F  =  (Scalar `  W )
6 lmodvsghm.s . . . . 5  |-  .x.  =  ( .s `  W )
7 lmodvsghm.k . . . . 5  |-  K  =  ( Base `  F
)
81, 5, 6, 7lmodvscl 18880 . . . 4  |-  ( ( W  e.  LMod  /\  R  e.  K  /\  x  e.  V )  ->  ( R  .x.  x )  e.  V )
983expa 1265 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  x  e.  V
)  ->  ( R  .x.  x )  e.  V
)
10 eqid 2622 . . 3  |-  ( x  e.  V  |->  ( R 
.x.  x ) )  =  ( x  e.  V  |->  ( R  .x.  x ) )
119, 10fmptd 6385 . 2  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
x  e.  V  |->  ( R  .x.  x ) ) : V --> V )
121, 2, 5, 6, 7lmodvsdi 18886 . . . . 5  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  y  e.  V  /\  z  e.  V )
)  ->  ( R  .x.  ( y ( +g  `  W ) z ) )  =  ( ( R  .x.  y ) ( +g  `  W
) ( R  .x.  z ) ) )
13123exp2 1285 . . . 4  |-  ( W  e.  LMod  ->  ( R  e.  K  ->  (
y  e.  V  -> 
( z  e.  V  ->  ( R  .x.  (
y ( +g  `  W
) z ) )  =  ( ( R 
.x.  y ) ( +g  `  W ) ( R  .x.  z
) ) ) ) ) )
1413imp43 621 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( R  .x.  (
y ( +g  `  W
) z ) )  =  ( ( R 
.x.  y ) ( +g  `  W ) ( R  .x.  z
) ) )
151, 2lmodvacl 18877 . . . . . 6  |-  ( ( W  e.  LMod  /\  y  e.  V  /\  z  e.  V )  ->  (
y ( +g  `  W
) z )  e.  V )
16153expb 1266 . . . . 5  |-  ( ( W  e.  LMod  /\  (
y  e.  V  /\  z  e.  V )
)  ->  ( y
( +g  `  W ) z )  e.  V
)
1716adantlr 751 . . . 4  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( y ( +g  `  W ) z )  e.  V )
18 oveq2 6658 . . . . 5  |-  ( x  =  ( y ( +g  `  W ) z )  ->  ( R  .x.  x )  =  ( R  .x.  (
y ( +g  `  W
) z ) ) )
19 ovex 6678 . . . . 5  |-  ( R 
.x.  ( y ( +g  `  W ) z ) )  e. 
_V
2018, 10, 19fvmpt 6282 . . . 4  |-  ( ( y ( +g  `  W
) z )  e.  V  ->  ( (
x  e.  V  |->  ( R  .x.  x ) ) `  ( y ( +g  `  W
) z ) )  =  ( R  .x.  ( y ( +g  `  W ) z ) ) )
2117, 20syl 17 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( R  .x.  x ) ) `  ( y ( +g  `  W ) z ) )  =  ( R 
.x.  ( y ( +g  `  W ) z ) ) )
22 oveq2 6658 . . . . . 6  |-  ( x  =  y  ->  ( R  .x.  x )  =  ( R  .x.  y
) )
23 ovex 6678 . . . . . 6  |-  ( R 
.x.  y )  e. 
_V
2422, 10, 23fvmpt 6282 . . . . 5  |-  ( y  e.  V  ->  (
( x  e.  V  |->  ( R  .x.  x
) ) `  y
)  =  ( R 
.x.  y ) )
25 oveq2 6658 . . . . . 6  |-  ( x  =  z  ->  ( R  .x.  x )  =  ( R  .x.  z
) )
26 ovex 6678 . . . . . 6  |-  ( R 
.x.  z )  e. 
_V
2725, 10, 26fvmpt 6282 . . . . 5  |-  ( z  e.  V  ->  (
( x  e.  V  |->  ( R  .x.  x
) ) `  z
)  =  ( R 
.x.  z ) )
2824, 27oveqan12d 6669 . . . 4  |-  ( ( y  e.  V  /\  z  e.  V )  ->  ( ( ( x  e.  V  |->  ( R 
.x.  x ) ) `
 y ) ( +g  `  W ) ( ( x  e.  V  |->  ( R  .x.  x ) ) `  z ) )  =  ( ( R  .x.  y ) ( +g  `  W ) ( R 
.x.  z ) ) )
2928adantl 482 . . 3  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( ( x  e.  V  |->  ( R 
.x.  x ) ) `
 y ) ( +g  `  W ) ( ( x  e.  V  |->  ( R  .x.  x ) ) `  z ) )  =  ( ( R  .x.  y ) ( +g  `  W ) ( R 
.x.  z ) ) )
3014, 21, 293eqtr4d 2666 . 2  |-  ( ( ( W  e.  LMod  /\  R  e.  K )  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( ( x  e.  V  |->  ( R  .x.  x ) ) `  ( y ( +g  `  W ) z ) )  =  ( ( ( x  e.  V  |->  ( R  .x.  x
) ) `  y
) ( +g  `  W
) ( ( x  e.  V  |->  ( R 
.x.  x ) ) `
 z ) ) )
311, 1, 2, 2, 4, 4, 11, 30isghmd 17669 1  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
x  e.  V  |->  ( R  .x.  x ) )  e.  ( W 
GrpHom  W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   Grpcgrp 17422    GrpHom cghm 17657   LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-lmod 18865
This theorem is referenced by:  gsumvsmul  18927  lmhmvsca  19045
  Copyright terms: Public domain W3C validator