MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcomx Structured version   Visualization version   GIF version

Theorem lsmcomx 18259
Description: Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcomx.v 𝐵 = (Base‘𝐺)
lsmcomx.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcomx ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcomx
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝐺 ∈ Abel)
2 simpl2 1065 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑇𝐵)
3 simprl 794 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝑇)
42, 3sseldd 3604 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑦𝐵)
5 simpl3 1066 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑈𝐵)
6 simprr 796 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝑈)
75, 6sseldd 3604 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → 𝑧𝐵)
8 lsmcomx.v . . . . . . . 8 𝐵 = (Base‘𝐺)
9 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
108, 9ablcom 18210 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
111, 4, 7, 10syl3anc 1326 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦))
1211eqeq2d 2632 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑦𝑇𝑧𝑈)) → (𝑥 = (𝑦(+g𝐺)𝑧) ↔ 𝑥 = (𝑧(+g𝐺)𝑦)))
13122rexbidva 3056 . . . 4 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑧(+g𝐺)𝑦)))
14 rexcom 3099 . . . 4 (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑧(+g𝐺)𝑦) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦))
1513, 14syl6bb 276 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
16 lsmcomx.s . . . 4 = (LSSum‘𝐺)
178, 9, 16lsmelvalx 18055 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
188, 9, 16lsmelvalx 18055 . . . 4 ((𝐺 ∈ Abel ∧ 𝑈𝐵𝑇𝐵) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
19183com23 1271 . . 3 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑧𝑈𝑦𝑇 𝑥 = (𝑧(+g𝐺)𝑦)))
2015, 17, 193bitr4d 300 . 2 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (𝑈 𝑇)))
2120eqrdv 2620 1 ((𝐺 ∈ Abel ∧ 𝑇𝐵𝑈𝐵) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  LSSumclsm 18049  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lsm 18051  df-cmn 18195  df-abl 18196
This theorem is referenced by:  lsmcom  18261
  Copyright terms: Public domain W3C validator