| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 3687 |
. . 3
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 |
| 2 | 1 | a1i 11 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵) |
| 3 | | ablgrp 18198 |
. . . . . 6
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp) |
| 5 | | oddvdssubg.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 6 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 7 | 5, 6 | grpidcl 17450 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 8 | 4, 7 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) →
(0g‘𝐺)
∈ 𝐵) |
| 9 | | torsubg.1 |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
| 10 | 9, 6 | od1 17976 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑂‘(0g‘𝐺)) = 1) |
| 11 | 4, 10 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g‘𝐺)) = 1) |
| 12 | | 1dvds 14996 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 1 ∥
𝑁) |
| 13 | 12 | adantl 482 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1
∥ 𝑁) |
| 14 | 11, 13 | eqbrtrd 4675 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g‘𝐺)) ∥ 𝑁) |
| 15 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = (0g‘𝐺) → (𝑂‘𝑥) = (𝑂‘(0g‘𝐺))) |
| 16 | 15 | breq1d 4663 |
. . . . 5
⊢ (𝑥 = (0g‘𝐺) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘(0g‘𝐺)) ∥ 𝑁)) |
| 17 | 16 | elrab 3363 |
. . . 4
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ ((0g‘𝐺) ∈ 𝐵 ∧ (𝑂‘(0g‘𝐺)) ∥ 𝑁)) |
| 18 | 8, 14, 17 | sylanbrc 698 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) →
(0g‘𝐺)
∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
| 19 | | ne0i 3921 |
. . 3
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅) |
| 20 | 18, 19 | syl 17 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅) |
| 21 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑂‘𝑥) = (𝑂‘𝑦)) |
| 22 | 21 | breq1d 4663 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘𝑦) ∥ 𝑁)) |
| 23 | 22 | elrab 3363 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) |
| 24 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑂‘𝑥) = (𝑂‘𝑧)) |
| 25 | 24 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘𝑧) ∥ 𝑁)) |
| 26 | 25 | elrab 3363 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) |
| 27 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp) |
| 28 | 27 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp) |
| 29 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → 𝑦 ∈ 𝐵) |
| 30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝑦 ∈ 𝐵) |
| 31 | | simprl 794 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝑧 ∈ 𝐵) |
| 32 | | eqid 2622 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 33 | 5, 32 | grpcl 17430 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 34 | 28, 30, 31, 33 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
| 35 | | simplll 798 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel) |
| 36 | | simpllr 799 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ) |
| 37 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(.g‘𝐺) = (.g‘𝐺) |
| 38 | 5, 37, 32 | mulgdi 18232 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑁(.g‘𝐺)𝑦)(+g‘𝐺)(𝑁(.g‘𝐺)𝑧))) |
| 39 | 35, 36, 30, 31, 38 | syl13anc 1328 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑁(.g‘𝐺)𝑦)(+g‘𝐺)(𝑁(.g‘𝐺)𝑧))) |
| 40 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (𝑂‘𝑦) ∥ 𝑁) |
| 41 | 40 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑂‘𝑦) ∥ 𝑁) |
| 42 | 5, 9, 37, 6 | oddvds 17966 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑦) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑦) = (0g‘𝐺))) |
| 43 | 28, 30, 36, 42 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑂‘𝑦) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑦) = (0g‘𝐺))) |
| 44 | 41, 43 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)𝑦) = (0g‘𝐺)) |
| 45 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑂‘𝑧) ∥ 𝑁) |
| 46 | 5, 9, 37, 6 | oddvds 17966 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑧) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑧) = (0g‘𝐺))) |
| 47 | 28, 31, 36, 46 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑂‘𝑧) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑧) = (0g‘𝐺))) |
| 48 | 45, 47 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)𝑧) = (0g‘𝐺)) |
| 49 | 44, 48 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑁(.g‘𝐺)𝑦)(+g‘𝐺)(𝑁(.g‘𝐺)𝑧)) = ((0g‘𝐺)(+g‘𝐺)(0g‘𝐺))) |
| 50 | 28, 7 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (0g‘𝐺) ∈ 𝐵) |
| 51 | 5, 32, 6 | grplid 17452 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(0g‘𝐺)
∈ 𝐵) →
((0g‘𝐺)(+g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
| 52 | 28, 50, 51 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((0g‘𝐺)(+g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
| 53 | 39, 49, 52 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (0g‘𝐺)) |
| 54 | 5, 9, 37, 6 | oddvds 17966 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑦(+g‘𝐺)𝑧) ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (0g‘𝐺))) |
| 55 | 28, 34, 36, 54 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (0g‘𝐺))) |
| 56 | 53, 55 | mpbird 247 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁) |
| 57 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑂‘𝑥) = (𝑂‘(𝑦(+g‘𝐺)𝑧))) |
| 58 | 57 | breq1d 4663 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁)) |
| 59 | 58 | elrab 3363 |
. . . . . . . 8
⊢ ((𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 ∧ (𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁)) |
| 60 | 34, 56, 59 | sylanbrc 698 |
. . . . . . 7
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
| 61 | 26, 60 | sylan2b 492 |
. . . . . 6
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) → (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
| 62 | 61 | ralrimiva 2966 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
| 63 | | eqid 2622 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 64 | 5, 63 | grpinvcl 17467 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 65 | 27, 29, 64 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
| 66 | 9, 63, 5 | odinv 17978 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑂‘((invg‘𝐺)‘𝑦)) = (𝑂‘𝑦)) |
| 67 | 27, 29, 66 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (𝑂‘((invg‘𝐺)‘𝑦)) = (𝑂‘𝑦)) |
| 68 | 67, 40 | eqbrtrd 4675 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (𝑂‘((invg‘𝐺)‘𝑦)) ∥ 𝑁) |
| 69 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = ((invg‘𝐺)‘𝑦) → (𝑂‘𝑥) = (𝑂‘((invg‘𝐺)‘𝑦))) |
| 70 | 69 | breq1d 4663 |
. . . . . . 7
⊢ (𝑥 = ((invg‘𝐺)‘𝑦) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘((invg‘𝐺)‘𝑦)) ∥ 𝑁)) |
| 71 | 70 | elrab 3363 |
. . . . . 6
⊢
(((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ (((invg‘𝐺)‘𝑦) ∈ 𝐵 ∧ (𝑂‘((invg‘𝐺)‘𝑦)) ∥ 𝑁)) |
| 72 | 65, 68, 71 | sylanbrc 698 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
| 73 | 62, 72 | jca 554 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})) |
| 74 | 23, 73 | sylan2b 492 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})) |
| 75 | 74 | ralrimiva 2966 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) →
∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})) |
| 76 | 5, 32, 63 | issubg2 17609 |
. . 3
⊢ (𝐺 ∈ Grp → ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})))) |
| 77 | 4, 76 | syl 17 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})))) |
| 78 | 2, 20, 75, 77 | mpbir3and 1245 |
1
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |