MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcom Structured version   Visualization version   GIF version

Theorem lsmcom 18261
Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmcom.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcom ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcom
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Abel)
2 eqid 2622 . . 3 (Base‘𝐺) = (Base‘𝐺)
32subgss 17595 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
42subgss 17595 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5 lsmcom.s . . 3 = (LSSum‘𝐺)
62, 5lsmcomx 18259 . 2 ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
71, 3, 4, 6syl3an 1368 1 ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  SubGrpcsubg 17588  LSSumclsm 18049  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-subg 17591  df-lsm 18051  df-cmn 18195  df-abl 18196
This theorem is referenced by:  lsm4  18263  pgpfac1lem4  18477  pgpfaclem1  18480  lspprabs  19095  ocvpj  20061  lcvexchlem3  34323  lcvexchlem4  34324  lcvexchlem5  34325  lsatcvatlem  34336  lsatcvat  34337  lsatcvat3  34339  l1cvat  34342  dia2dimlem5  36357  dihjatc3  36602  dihmeetlem9N  36604  dihjat  36712  lclkrlem2b  36797
  Copyright terms: Public domain W3C validator