| Step | Hyp | Ref
| Expression |
| 1 | | ltbval.c |
. 2
⊢ 𝐶 = (𝑇 <bag 𝐼) |
| 2 | | ltbval.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑊) |
| 3 | | ltbval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 4 | | elex 3212 |
. . . 4
⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) |
| 5 | | elex 3212 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) |
| 6 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
| 7 | 6 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (ℕ0
↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼)) |
| 8 | | rabeq 3192 |
. . . . . . . . . 10
⊢
((ℕ0 ↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 10 | | ltbval.d |
. . . . . . . . 9
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
| 12 | 11 | sseq2d 3633 |
. . . . . . 7
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↔ {𝑥, 𝑦} ⊆ 𝐷)) |
| 13 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → 𝑟 = 𝑇) |
| 14 | 13 | breqd 4664 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (𝑧𝑟𝑤 ↔ 𝑧𝑇𝑤)) |
| 15 | 14 | imbi1d 331 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → ((𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 16 | 6, 15 | raleqbidv 3152 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 17 | 16 | anbi2d 740 |
. . . . . . . 8
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 18 | 6, 17 | rexeqbidv 3153 |
. . . . . . 7
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 19 | 12, 18 | anbi12d 747 |
. . . . . 6
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → (({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))))) |
| 20 | 19 | opabbidv 4716 |
. . . . 5
⊢ ((𝑟 = 𝑇 ∧ 𝑖 = 𝐼) → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| 21 | | df-ltbag 19359 |
. . . . 5
⊢
<bag = (𝑟
∈ V, 𝑖 ∈ V
↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| 22 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 23 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 24 | 22, 23 | prss 4351 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷) |
| 25 | 24 | anbi1i 731 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 26 | 25 | opabbii 4717 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} |
| 27 | | ovex 6678 |
. . . . . . . . 9
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 28 | 10, 27 | rabex2 4815 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
| 29 | 28, 28 | xpex 6962 |
. . . . . . 7
⊢ (𝐷 × 𝐷) ∈ V |
| 30 | | opabssxp 5193 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} ⊆ (𝐷 × 𝐷) |
| 31 | 29, 30 | ssexi 4803 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} ∈ V |
| 32 | 26, 31 | eqeltrri 2698 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} ∈ V |
| 33 | 20, 21, 32 | ovmpt2a 6791 |
. . . 4
⊢ ((𝑇 ∈ V ∧ 𝐼 ∈ V) → (𝑇 <bag 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| 34 | 4, 5, 33 | syl2an 494 |
. . 3
⊢ ((𝑇 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉) → (𝑇 <bag 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| 35 | 2, 3, 34 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑇 <bag 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
| 36 | 1, 35 | syl5eq 2668 |
1
⊢ (𝜑 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |