MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbval Structured version   Visualization version   Unicode version

Theorem ltbval 19471
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ltbval.c  |-  C  =  ( T  <bag  I )
ltbval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
ltbval.i  |-  ( ph  ->  I  e.  V )
ltbval.t  |-  ( ph  ->  T  e.  W )
Assertion
Ref Expression
ltbval  |-  ( ph  ->  C  =  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
Distinct variable groups:    x, y, D    w, h, x, y, z, I    ph, h, x, y    w, T, x, y, z
Allowed substitution hints:    ph( z, w)    C( x, y, z, w, h)    D( z, w, h)    T( h)    V( x, y, z, w, h)    W( x, y, z, w, h)

Proof of Theorem ltbval
Dummy variables  i 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltbval.c . 2  |-  C  =  ( T  <bag  I )
2 ltbval.t . . 3  |-  ( ph  ->  T  e.  W )
3 ltbval.i . . 3  |-  ( ph  ->  I  e.  V )
4 elex 3212 . . . 4  |-  ( T  e.  W  ->  T  e.  _V )
5 elex 3212 . . . 4  |-  ( I  e.  V  ->  I  e.  _V )
6 simpr 477 . . . . . . . . . . 11  |-  ( ( r  =  T  /\  i  =  I )  ->  i  =  I )
76oveq2d 6666 . . . . . . . . . 10  |-  ( ( r  =  T  /\  i  =  I )  ->  ( NN0  ^m  i
)  =  ( NN0 
^m  I ) )
8 rabeq 3192 . . . . . . . . . 10  |-  ( ( NN0  ^m  i )  =  ( NN0  ^m  I )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )
97, 8syl 17 . . . . . . . . 9  |-  ( ( r  =  T  /\  i  =  I )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } )
10 ltbval.d . . . . . . . . 9  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
119, 10syl6eqr 2674 . . . . . . . 8  |-  ( ( r  =  T  /\  i  =  I )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  D )
1211sseq2d 3633 . . . . . . 7  |-  ( ( r  =  T  /\  i  =  I )  ->  ( { x ,  y }  C_  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  <->  { x ,  y }  C_  D ) )
13 simpl 473 . . . . . . . . . . . 12  |-  ( ( r  =  T  /\  i  =  I )  ->  r  =  T )
1413breqd 4664 . . . . . . . . . . 11  |-  ( ( r  =  T  /\  i  =  I )  ->  ( z r w  <-> 
z T w ) )
1514imbi1d 331 . . . . . . . . . 10  |-  ( ( r  =  T  /\  i  =  I )  ->  ( ( z r w  ->  ( x `  w )  =  ( y `  w ) )  <->  ( z T w  ->  ( x `  w )  =  ( y `  w ) ) ) )
166, 15raleqbidv 3152 . . . . . . . . 9  |-  ( ( r  =  T  /\  i  =  I )  ->  ( A. w  e.  i  ( z r w  ->  ( x `  w )  =  ( y `  w ) )  <->  A. w  e.  I 
( z T w  ->  ( x `  w )  =  ( y `  w ) ) ) )
1716anbi2d 740 . . . . . . . 8  |-  ( ( r  =  T  /\  i  =  I )  ->  ( ( ( x `
 z )  < 
( y `  z
)  /\  A. w  e.  i  ( z
r w  ->  (
x `  w )  =  ( y `  w ) ) )  <-> 
( ( x `  z )  <  (
y `  z )  /\  A. w  e.  I 
( z T w  ->  ( x `  w )  =  ( y `  w ) ) ) ) )
186, 17rexeqbidv 3153 . . . . . . 7  |-  ( ( r  =  T  /\  i  =  I )  ->  ( E. z  e.  i  ( ( x `
 z )  < 
( y `  z
)  /\  A. w  e.  i  ( z
r w  ->  (
x `  w )  =  ( y `  w ) ) )  <->  E. z  e.  I 
( ( x `  z )  <  (
y `  z )  /\  A. w  e.  I 
( z T w  ->  ( x `  w )  =  ( y `  w ) ) ) ) )
1912, 18anbi12d 747 . . . . . 6  |-  ( ( r  =  T  /\  i  =  I )  ->  ( ( { x ,  y }  C_  { h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin }  /\  E. z  e.  i  ( ( x `
 z )  < 
( y `  z
)  /\  A. w  e.  i  ( z
r w  ->  (
x `  w )  =  ( y `  w ) ) ) )  <->  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `
 z )  < 
( y `  z
)  /\  A. w  e.  I  ( z T w  ->  ( x `
 w )  =  ( y `  w
) ) ) ) ) )
2019opabbidv 4716 . . . . 5  |-  ( ( r  =  T  /\  i  =  I )  ->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  /\  E. z  e.  i  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  i  (
z r w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  D  /\  E. z  e.  I  (
( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
21 df-ltbag 19359 . . . . 5  |-  <bag  =  ( r  e.  _V , 
i  e.  _V  |->  {
<. x ,  y >.  |  ( { x ,  y }  C_  { h  e.  ( NN0 
^m  i )  |  ( `' h " NN )  e.  Fin }  /\  E. z  e.  i  ( ( x `
 z )  < 
( y `  z
)  /\  A. w  e.  i  ( z
r w  ->  (
x `  w )  =  ( y `  w ) ) ) ) } )
22 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
23 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
2422, 23prss 4351 . . . . . . . 8  |-  ( ( x  e.  D  /\  y  e.  D )  <->  { x ,  y } 
C_  D )
2524anbi1i 731 . . . . . . 7  |-  ( ( ( x  e.  D  /\  y  e.  D
)  /\  E. z  e.  I  ( (
x `  z )  <  ( y `  z
)  /\  A. w  e.  I  ( z T w  ->  ( x `
 w )  =  ( y `  w
) ) ) )  <-> 
( { x ,  y }  C_  D  /\  E. z  e.  I 
( ( x `  z )  <  (
y `  z )  /\  A. w  e.  I 
( z T w  ->  ( x `  w )  =  ( y `  w ) ) ) ) )
2625opabbii 4717 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  D  /\  y  e.  D
)  /\  E. z  e.  I  ( (
x `  z )  <  ( y `  z
)  /\  A. w  e.  I  ( z T w  ->  ( x `
 w )  =  ( y `  w
) ) ) ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) }
27 ovex 6678 . . . . . . . . 9  |-  ( NN0 
^m  I )  e. 
_V
2810, 27rabex2 4815 . . . . . . . 8  |-  D  e. 
_V
2928, 28xpex 6962 . . . . . . 7  |-  ( D  X.  D )  e. 
_V
30 opabssxp 5193 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  D  /\  y  e.  D
)  /\  E. z  e.  I  ( (
x `  z )  <  ( y `  z
)  /\  A. w  e.  I  ( z T w  ->  ( x `
 w )  =  ( y `  w
) ) ) ) }  C_  ( D  X.  D )
3129, 30ssexi 4803 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  D  /\  y  e.  D
)  /\  E. z  e.  I  ( (
x `  z )  <  ( y `  z
)  /\  A. w  e.  I  ( z T w  ->  ( x `
 w )  =  ( y `  w
) ) ) ) }  e.  _V
3226, 31eqeltrri 2698 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) }  e.  _V
3320, 21, 32ovmpt2a 6791 . . . 4  |-  ( ( T  e.  _V  /\  I  e.  _V )  ->  ( T  <bag  I )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
344, 5, 33syl2an 494 . . 3  |-  ( ( T  e.  W  /\  I  e.  V )  ->  ( T  <bag  I )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
352, 3, 34syl2anc 693 . 2  |-  ( ph  ->  ( T  <bag  I )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
361, 35syl5eq 2668 1  |-  ( ph  ->  C  =  { <. x ,  y >.  |  ( { x ,  y }  C_  D  /\  E. z  e.  I  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  I  (
z T w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653   {copab 4712    X. cxp 5112   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955    < clt 10074   NNcn 11020   NN0cn0 11292    <bag cltb 19354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ltbag 19359
This theorem is referenced by:  ltbwe  19472
  Copyright terms: Public domain W3C validator