| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltbval | Structured version Visualization version Unicode version | ||
| Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ltbval.c |
|
| ltbval.d |
|
| ltbval.i |
|
| ltbval.t |
|
| Ref | Expression |
|---|---|
| ltbval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltbval.c |
. 2
| |
| 2 | ltbval.t |
. . 3
| |
| 3 | ltbval.i |
. . 3
| |
| 4 | elex 3212 |
. . . 4
| |
| 5 | elex 3212 |
. . . 4
| |
| 6 | simpr 477 |
. . . . . . . . . . 11
| |
| 7 | 6 | oveq2d 6666 |
. . . . . . . . . 10
|
| 8 | rabeq 3192 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl 17 |
. . . . . . . . 9
|
| 10 | ltbval.d |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . 8
|
| 12 | 11 | sseq2d 3633 |
. . . . . . 7
|
| 13 | simpl 473 |
. . . . . . . . . . . 12
| |
| 14 | 13 | breqd 4664 |
. . . . . . . . . . 11
|
| 15 | 14 | imbi1d 331 |
. . . . . . . . . 10
|
| 16 | 6, 15 | raleqbidv 3152 |
. . . . . . . . 9
|
| 17 | 16 | anbi2d 740 |
. . . . . . . 8
|
| 18 | 6, 17 | rexeqbidv 3153 |
. . . . . . 7
|
| 19 | 12, 18 | anbi12d 747 |
. . . . . 6
|
| 20 | 19 | opabbidv 4716 |
. . . . 5
|
| 21 | df-ltbag 19359 |
. . . . 5
| |
| 22 | vex 3203 |
. . . . . . . . 9
| |
| 23 | vex 3203 |
. . . . . . . . 9
| |
| 24 | 22, 23 | prss 4351 |
. . . . . . . 8
|
| 25 | 24 | anbi1i 731 |
. . . . . . 7
|
| 26 | 25 | opabbii 4717 |
. . . . . 6
|
| 27 | ovex 6678 |
. . . . . . . . 9
| |
| 28 | 10, 27 | rabex2 4815 |
. . . . . . . 8
|
| 29 | 28, 28 | xpex 6962 |
. . . . . . 7
|
| 30 | opabssxp 5193 |
. . . . . . 7
| |
| 31 | 29, 30 | ssexi 4803 |
. . . . . 6
|
| 32 | 26, 31 | eqeltrri 2698 |
. . . . 5
|
| 33 | 20, 21, 32 | ovmpt2a 6791 |
. . . 4
|
| 34 | 4, 5, 33 | syl2an 494 |
. . 3
|
| 35 | 2, 3, 34 | syl2anc 693 |
. 2
|
| 36 | 1, 35 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-ltbag 19359 |
| This theorem is referenced by: ltbwe 19472 |
| Copyright terms: Public domain | W3C validator |