MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbwe Structured version   Visualization version   GIF version

Theorem ltbwe 19472
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
ltbwe.w (𝜑𝑇 We 𝐼)
Assertion
Ref Expression
ltbwe (𝜑𝐶 We 𝐷)
Distinct variable groups:   ,𝐼   𝜑,
Allowed substitution hints:   𝐶()   𝐷()   𝑇()   𝑉()   𝑊()

Proof of Theorem ltbwe
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2 breq1 4656 . . . . . 6 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0))
32cbvrabv 3199 . . . . 5 { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0} = {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ 𝑥 finSupp 0}
4 ltbwe.w . . . . 5 (𝜑𝑇 We 𝐼)
5 nn0uz 11722 . . . . . 6 0 = (ℤ‘0)
6 ltweuz 12760 . . . . . . 7 < We (ℤ‘0)
7 weeq2 5103 . . . . . . 7 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
86, 7mpbiri 248 . . . . . 6 (ℕ0 = (ℤ‘0) → < We ℕ0)
95, 8mp1i 13 . . . . 5 (𝜑 → < We ℕ0)
10 0nn0 11307 . . . . . 6 0 ∈ ℕ0
11 ne0i 3921 . . . . . 6 (0 ∈ ℕ0 → ℕ0 ≠ ∅)
1210, 11mp1i 13 . . . . 5 (𝜑 → ℕ0 ≠ ∅)
13 eqid 2622 . . . . 5 OrdIso(𝑇, 𝐼) = OrdIso(𝑇, 𝐼)
14 0z 11388 . . . . . . 7 0 ∈ ℤ
15 hashgval2 13167 . . . . . . 7 (# ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1614, 15om2uzoi 12754 . . . . . 6 (# ↾ ω) = OrdIso( < , (ℤ‘0))
17 oieq2 8418 . . . . . . 7 (ℕ0 = (ℤ‘0) → OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0)))
185, 17ax-mp 5 . . . . . 6 OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0))
1916, 18eqtr4i 2647 . . . . 5 (# ↾ ω) = OrdIso( < , ℕ0)
20 peano1 7085 . . . . . . 7 ∅ ∈ ω
21 fvres 6207 . . . . . . 7 (∅ ∈ ω → ((# ↾ ω)‘∅) = (#‘∅))
2220, 21ax-mp 5 . . . . . 6 ((# ↾ ω)‘∅) = (#‘∅)
23 hash0 13158 . . . . . 6 (#‘∅) = 0
2422, 23eqtr2i 2645 . . . . 5 0 = ((# ↾ ω)‘∅)
251, 3, 4, 9, 12, 13, 19, 24wemapwe 8594 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0})
26 ltbval.d . . . . . 6 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
27 elmapfun 7881 . . . . . . . . . 10 ( ∈ (ℕ0𝑚 𝐼) → Fun )
2827adantl 482 . . . . . . . . 9 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → Fun )
29 simpr 477 . . . . . . . . 9 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → ∈ (ℕ0𝑚 𝐼))
30 c0ex 10034 . . . . . . . . . 10 0 ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → 0 ∈ V)
32 funisfsupp 8280 . . . . . . . . 9 ((Fun ∈ (ℕ0𝑚 𝐼) ∧ 0 ∈ V) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
3328, 29, 31, 32syl3anc 1326 . . . . . . . 8 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
34 ltbval.i . . . . . . . . 9 (𝜑𝐼𝑉)
35 elmapi 7879 . . . . . . . . 9 ( ∈ (ℕ0𝑚 𝐼) → :𝐼⟶ℕ0)
36 frnnn0supp 11349 . . . . . . . . . 10 ((𝐼𝑉:𝐼⟶ℕ0) → ( supp 0) = ( “ ℕ))
3736eleq1d 2686 . . . . . . . . 9 ((𝐼𝑉:𝐼⟶ℕ0) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3834, 35, 37syl2an 494 . . . . . . . 8 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3933, 38bitr2d 269 . . . . . . 7 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → (( “ ℕ) ∈ Fin ↔ finSupp 0))
4039rabbidva 3188 . . . . . 6 (𝜑 → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0})
4126, 40syl5eq 2668 . . . . 5 (𝜑𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0})
42 weeq2 5103 . . . . 5 (𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0} → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0}))
4341, 42syl 17 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0}))
4425, 43mpbird 247 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷)
45 weinxp 5186 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
4644, 45sylib 208 . 2 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
47 ltbval.c . . . . 5 𝐶 = (𝑇 <bag 𝐼)
48 ltbval.t . . . . 5 (𝜑𝑇𝑊)
4947, 26, 34, 48ltbval 19471 . . . 4 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
50 df-xp 5120 . . . . . . 7 (𝐷 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)}
51 vex 3203 . . . . . . . . 9 𝑥 ∈ V
52 vex 3203 . . . . . . . . 9 𝑦 ∈ V
5351, 52prss 4351 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
5453opabbii 4717 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷}
5550, 54eqtr2i 2645 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} = (𝐷 × 𝐷)
5655ineq1i 3810 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))})
57 inopab 5252 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
58 incom 3805 . . . . 5 ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
5956, 57, 583eqtr3i 2652 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
6049, 59syl6eq 2672 . . 3 (𝜑𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)))
61 weeq1 5102 . . 3 (𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6260, 61syl 17 . 2 (𝜑 → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6346, 62mpbird 247 1 (𝜑𝐶 We 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573  wss 3574  c0 3915  {cpr 4179   class class class wbr 4653  {copab 4712   We wwe 5072   × cxp 5112  ccnv 5113  cres 5116  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  OrdIsocoi 8414  0cc0 9936   < clt 10074  cn 11020  0cn0 11292  cuz 11687  #chash 13117   <bag cltb 19354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-ltbag 19359
This theorem is referenced by:  opsrtoslem2  19485
  Copyright terms: Public domain W3C validator