Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli2 Structured version   Visualization version   GIF version

Theorem lvoli2 34867
Description: The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvoli2.l = (le‘𝐾)
lvoli2.j = (join‘𝐾)
lvoli2.a 𝐴 = (Atoms‘𝐾)
lvoli2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)

Proof of Theorem lvoli2
Dummy variables 𝑞 𝑝 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp12 1092 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
2 simp13 1093 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3 simp3 1063 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4 eqidd 2623 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
5 neeq1 2856 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 6657 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 𝑞) = (𝑃 𝑞))
76breq2d 4665 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑅 (𝑝 𝑞) ↔ 𝑅 (𝑃 𝑞)))
87notbid 308 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑅 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑃 𝑞)))
96oveq1d 6665 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝 𝑞) 𝑅) = ((𝑃 𝑞) 𝑅))
109breq2d 4665 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑆 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑞) 𝑅)))
1110notbid 308 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑆 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑞) 𝑅)))
125, 8, 113anbi123d 1399 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ↔ (𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅))))
139oveq1d 6665 . . . . . . . . 9 (𝑝 = 𝑃 → (((𝑝 𝑞) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))
1413eqeq2d 2632 . . . . . . . 8 (𝑝 = 𝑃 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)))
1512, 14anbi12d 747 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))))
16 neeq2 2857 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
17 oveq2 6658 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑃 𝑞) = (𝑃 𝑄))
1817breq2d 4665 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑅 (𝑃 𝑞) ↔ 𝑅 (𝑃 𝑄)))
1918notbid 308 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑅 (𝑃 𝑞) ↔ ¬ 𝑅 (𝑃 𝑄)))
2017oveq1d 6665 . . . . . . . . . . 11 (𝑞 = 𝑄 → ((𝑃 𝑞) 𝑅) = ((𝑃 𝑄) 𝑅))
2120breq2d 4665 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑆 ((𝑃 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑄) 𝑅)))
2221notbid 308 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑆 ((𝑃 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
2316, 19, 223anbi123d 1399 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
2420oveq1d 6665 . . . . . . . . 9 (𝑞 = 𝑄 → (((𝑃 𝑞) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
2524eqeq2d 2632 . . . . . . . 8 (𝑞 = 𝑄 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆)))
2623, 25anbi12d 747 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))))
2715, 26rspc2ev 3324 . . . . . 6 ((𝑃𝐴𝑄𝐴 ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
281, 2, 3, 4, 27syl112anc 1330 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
29283exp 1264 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))))
30 simplrl 800 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑅𝐴)
31 simplrr 801 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑆𝐴)
32 simpr 477 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
33 breq1 4656 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑟 (𝑝 𝑞) ↔ 𝑅 (𝑝 𝑞)))
3433notbid 308 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑟 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑝 𝑞)))
35 oveq2 6658 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((𝑝 𝑞) 𝑟) = ((𝑝 𝑞) 𝑅))
3635breq2d 4665 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑠 ((𝑝 𝑞) 𝑟) ↔ 𝑠 ((𝑝 𝑞) 𝑅)))
3736notbid 308 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑝 𝑞) 𝑅)))
3834, 373anbi23d 1402 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅))))
3935oveq1d 6665 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((𝑝 𝑞) 𝑟) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑠))
4039eqeq2d 2632 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)))
4138, 40anbi12d 747 . . . . . . . . . 10 (𝑟 = 𝑅 → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠))))
42 breq1 4656 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑝 𝑞) 𝑅)))
4342notbid 308 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (¬ 𝑠 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑝 𝑞) 𝑅)))
44433anbi3d 1405 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅))))
45 oveq2 6658 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (((𝑝 𝑞) 𝑅) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑆))
4645eqeq2d 2632 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
4744, 46anbi12d 747 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))))
4841, 47rspc2ev 3324 . . . . . . . . 9 ((𝑅𝐴𝑆𝐴 ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
4930, 31, 32, 48syl3anc 1326 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
5049ex 450 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5150reximdv 3016 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5251reximdv 3016 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5352ex 450 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
5429, 53syldd 72 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
55543imp 1256 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
56 simp11 1091 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
57 hllat 34650 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
5856, 57syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
59 eqid 2622 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
60 lvoli2.j . . . . . . 7 = (join‘𝐾)
61 lvoli2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6259, 60, 61hlatjcl 34653 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
63623ad2ant1 1082 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
64 simp2l 1087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
6559, 61atbase 34576 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6664, 65syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
6759, 60latjcl 17051 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6858, 63, 66, 67syl3anc 1326 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
69 simp2r 1088 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
7059, 61atbase 34576 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
7169, 70syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
7259, 60latjcl 17051 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
7358, 68, 71, 72syl3anc 1326 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
74 lvoli2.l . . . 4 = (le‘𝐾)
75 lvoli2.v . . . 4 𝑉 = (LVols‘𝐾)
7659, 74, 60, 61, 75islvol5 34865 . . 3 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7756, 73, 76syl2anc 693 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7855, 77mpbird 247 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  joincjn 16944  Latclat 17045  Atomscatm 34550  HLchlt 34637  LVolsclvol 34779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  islvol2aN  34878  4atlem3  34882  2lplnja  34905
  Copyright terms: Public domain W3C validator