| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoli2 | Structured version Visualization version Unicode version | ||
| Description: The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvoli2.l |
|
| lvoli2.j |
|
| lvoli2.a |
|
| lvoli2.v |
|
| Ref | Expression |
|---|---|
| lvoli2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp12 1092 |
. . . . . 6
| |
| 2 | simp13 1093 |
. . . . . 6
| |
| 3 | simp3 1063 |
. . . . . 6
| |
| 4 | eqidd 2623 |
. . . . . 6
| |
| 5 | neeq1 2856 |
. . . . . . . . 9
| |
| 6 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 7 | 6 | breq2d 4665 |
. . . . . . . . . 10
|
| 8 | 7 | notbid 308 |
. . . . . . . . 9
|
| 9 | 6 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 10 | 9 | breq2d 4665 |
. . . . . . . . . 10
|
| 11 | 10 | notbid 308 |
. . . . . . . . 9
|
| 12 | 5, 8, 11 | 3anbi123d 1399 |
. . . . . . . 8
|
| 13 | 9 | oveq1d 6665 |
. . . . . . . . 9
|
| 14 | 13 | eqeq2d 2632 |
. . . . . . . 8
|
| 15 | 12, 14 | anbi12d 747 |
. . . . . . 7
|
| 16 | neeq2 2857 |
. . . . . . . . 9
| |
| 17 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 18 | 17 | breq2d 4665 |
. . . . . . . . . 10
|
| 19 | 18 | notbid 308 |
. . . . . . . . 9
|
| 20 | 17 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 21 | 20 | breq2d 4665 |
. . . . . . . . . 10
|
| 22 | 21 | notbid 308 |
. . . . . . . . 9
|
| 23 | 16, 19, 22 | 3anbi123d 1399 |
. . . . . . . 8
|
| 24 | 20 | oveq1d 6665 |
. . . . . . . . 9
|
| 25 | 24 | eqeq2d 2632 |
. . . . . . . 8
|
| 26 | 23, 25 | anbi12d 747 |
. . . . . . 7
|
| 27 | 15, 26 | rspc2ev 3324 |
. . . . . 6
|
| 28 | 1, 2, 3, 4, 27 | syl112anc 1330 |
. . . . 5
|
| 29 | 28 | 3exp 1264 |
. . . 4
|
| 30 | simplrl 800 |
. . . . . . . . 9
| |
| 31 | simplrr 801 |
. . . . . . . . 9
| |
| 32 | simpr 477 |
. . . . . . . . 9
| |
| 33 | breq1 4656 |
. . . . . . . . . . . . 13
| |
| 34 | 33 | notbid 308 |
. . . . . . . . . . . 12
|
| 35 | oveq2 6658 |
. . . . . . . . . . . . . 14
| |
| 36 | 35 | breq2d 4665 |
. . . . . . . . . . . . 13
|
| 37 | 36 | notbid 308 |
. . . . . . . . . . . 12
|
| 38 | 34, 37 | 3anbi23d 1402 |
. . . . . . . . . . 11
|
| 39 | 35 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 40 | 39 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 41 | 38, 40 | anbi12d 747 |
. . . . . . . . . 10
|
| 42 | breq1 4656 |
. . . . . . . . . . . . 13
| |
| 43 | 42 | notbid 308 |
. . . . . . . . . . . 12
|
| 44 | 43 | 3anbi3d 1405 |
. . . . . . . . . . 11
|
| 45 | oveq2 6658 |
. . . . . . . . . . . 12
| |
| 46 | 45 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | anbi12d 747 |
. . . . . . . . . 10
|
| 48 | 41, 47 | rspc2ev 3324 |
. . . . . . . . 9
|
| 49 | 30, 31, 32, 48 | syl3anc 1326 |
. . . . . . . 8
|
| 50 | 49 | ex 450 |
. . . . . . 7
|
| 51 | 50 | reximdv 3016 |
. . . . . 6
|
| 52 | 51 | reximdv 3016 |
. . . . 5
|
| 53 | 52 | ex 450 |
. . . 4
|
| 54 | 29, 53 | syldd 72 |
. . 3
|
| 55 | 54 | 3imp 1256 |
. 2
|
| 56 | simp11 1091 |
. . 3
| |
| 57 | hllat 34650 |
. . . . 5
| |
| 58 | 56, 57 | syl 17 |
. . . 4
|
| 59 | eqid 2622 |
. . . . . . 7
| |
| 60 | lvoli2.j |
. . . . . . 7
| |
| 61 | lvoli2.a |
. . . . . . 7
| |
| 62 | 59, 60, 61 | hlatjcl 34653 |
. . . . . 6
|
| 63 | 62 | 3ad2ant1 1082 |
. . . . 5
|
| 64 | simp2l 1087 |
. . . . . 6
| |
| 65 | 59, 61 | atbase 34576 |
. . . . . 6
|
| 66 | 64, 65 | syl 17 |
. . . . 5
|
| 67 | 59, 60 | latjcl 17051 |
. . . . 5
|
| 68 | 58, 63, 66, 67 | syl3anc 1326 |
. . . 4
|
| 69 | simp2r 1088 |
. . . . 5
| |
| 70 | 59, 61 | atbase 34576 |
. . . . 5
|
| 71 | 69, 70 | syl 17 |
. . . 4
|
| 72 | 59, 60 | latjcl 17051 |
. . . 4
|
| 73 | 58, 68, 71, 72 | syl3anc 1326 |
. . 3
|
| 74 | lvoli2.l |
. . . 4
| |
| 75 | lvoli2.v |
. . . 4
| |
| 76 | 59, 74, 60, 61, 75 | islvol5 34865 |
. . 3
|
| 77 | 56, 73, 76 | syl2anc 693 |
. 2
|
| 78 | 55, 77 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 |
| This theorem is referenced by: islvol2aN 34878 4atlem3 34882 2lplnja 34905 |
| Copyright terms: Public domain | W3C validator |