Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeval Structured version   Visualization version   GIF version

Theorem madeval 31935
Description: The value of the made by function. (Contributed by Scott Fenton, 17-Dec-2021.)
Assertion
Ref Expression
madeval (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))

Proof of Theorem madeval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 31930 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr2 7494 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)))
31tfr1 7493 . . . . 5 M Fn On
4 fnfun 5988 . . . . 5 ( M Fn On → Fun M )
53, 4ax-mp 5 . . . 4 Fun M
6 resfunexg 6479 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M ↾ 𝐴) ∈ V)
75, 6mpan 706 . . 3 (𝐴 ∈ On → ( M ↾ 𝐴) ∈ V)
8 scutf 31919 . . . . 5 |s : <<s ⟶ No
9 ffun 6048 . . . . 5 ( |s : <<s ⟶ No → Fun |s )
108, 9ax-mp 5 . . . 4 Fun |s
11 funimaexg 5975 . . . . . . 7 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
125, 11mpan 706 . . . . . 6 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
13 uniexg 6955 . . . . . 6 (( M “ 𝐴) ∈ V → ( M “ 𝐴) ∈ V)
14 pwexg 4850 . . . . . 6 ( ( M “ 𝐴) ∈ V → 𝒫 ( M “ 𝐴) ∈ V)
1512, 13, 143syl 18 . . . . 5 (𝐴 ∈ On → 𝒫 ( M “ 𝐴) ∈ V)
16 xpexg 6960 . . . . 5 ((𝒫 ( M “ 𝐴) ∈ V ∧ 𝒫 ( M “ 𝐴) ∈ V) → (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V)
1715, 15, 16syl2anc 693 . . . 4 (𝐴 ∈ On → (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V)
18 funimaexg 5975 . . . 4 ((Fun |s ∧ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)) ∈ V) → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
1910, 17, 18sylancr 695 . . 3 (𝐴 ∈ On → ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V)
20 rneq 5351 . . . . . . . . 9 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ran ( M ↾ 𝐴))
21 df-ima 5127 . . . . . . . . 9 ( M “ 𝐴) = ran ( M ↾ 𝐴)
2220, 21syl6eqr 2674 . . . . . . . 8 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
2322unieqd 4446 . . . . . . 7 (𝑥 = ( M ↾ 𝐴) → ran 𝑥 = ( M “ 𝐴))
2423pweqd 4163 . . . . . 6 (𝑥 = ( M ↾ 𝐴) → 𝒫 ran 𝑥 = 𝒫 ( M “ 𝐴))
2524sqxpeqd 5141 . . . . 5 (𝑥 = ( M ↾ 𝐴) → (𝒫 ran 𝑥 × 𝒫 ran 𝑥) = (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴)))
2625imaeq2d 5466 . . . 4 (𝑥 = ( M ↾ 𝐴) → ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
27 eqid 2622 . . . 4 (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))) = (𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))
2826, 27fvmptg 6280 . . 3 ((( M ↾ 𝐴) ∈ V ∧ ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))) ∈ V) → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
297, 19, 28syl2anc 693 . 2 (𝐴 ∈ On → ((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))‘( M ↾ 𝐴)) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
302, 29eqtrd 2656 1 (𝐴 ∈ On → ( M ‘𝐴) = ( |s “ (𝒫 ( M “ 𝐴) × 𝒫 ( M “ 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  𝒫 cpw 4158   cuni 4436  cmpt 4729   × cxp 5112  ran crn 5115  cres 5116  cima 5117  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888   No csur 31793   <<s csslt 31896   |s cscut 31898   M cmade 31925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sslt 31897  df-scut 31899  df-made 31930
This theorem is referenced by:  madeval2  31936
  Copyright terms: Public domain W3C validator