Proof of Theorem mapsnd
| Step | Hyp | Ref
| Expression |
| 1 | | mapsnd.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | mapsnd.2 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 3 | | snex 4908 |
. . . . . 6
⊢ {𝐵} ∈ V |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → {𝐵} ∈ V) |
| 5 | 2, 4 | syl 17 |
. . . 4
⊢ (𝜑 → {𝐵} ∈ V) |
| 6 | | elmapg 7870 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ {𝐵} ∈ V) → (𝑓 ∈ (𝐴 ↑𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴)) |
| 7 | 1, 5, 6 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐴 ↑𝑚 {𝐵}) ↔ 𝑓:{𝐵}⟶𝐴)) |
| 8 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓 Fn {𝐵}) |
| 9 | 8 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑓:{𝐵}⟶𝐴 → 𝑓 Fn {𝐵})) |
| 10 | 9 | imp 445 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → 𝑓 Fn {𝐵}) |
| 11 | | snidg 4206 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ {𝐵}) |
| 12 | 2, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ {𝐵}) |
| 13 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → 𝐵 ∈ {𝐵}) |
| 14 | | fneu 5995 |
. . . . . . . . 9
⊢ ((𝑓 Fn {𝐵} ∧ 𝐵 ∈ {𝐵}) → ∃!𝑦 𝐵𝑓𝑦) |
| 15 | 10, 13, 14 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃!𝑦 𝐵𝑓𝑦) |
| 16 | | euabsn 4261 |
. . . . . . . . . 10
⊢
(∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦{𝑦 ∣ 𝐵𝑓𝑦} = {𝑦}) |
| 17 | | frel 6050 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → Rel 𝑓) |
| 18 | | relimasn 5488 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝑓 → (𝑓 “ {𝐵}) = {𝑦 ∣ 𝐵𝑓𝑦}) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = {𝑦 ∣ 𝐵𝑓𝑦}) |
| 20 | | imadmrn 5476 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
| 21 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:{𝐵}⟶𝐴 → dom 𝑓 = {𝐵}) |
| 22 | 21 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ dom 𝑓) = (𝑓 “ {𝐵})) |
| 23 | 20, 22 | syl5reqr 2671 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑓 “ {𝐵}) = ran 𝑓) |
| 24 | 19, 23 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ (𝑓:{𝐵}⟶𝐴 → {𝑦 ∣ 𝐵𝑓𝑦} = ran 𝑓) |
| 25 | 24 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑓:{𝐵}⟶𝐴 → ({𝑦 ∣ 𝐵𝑓𝑦} = {𝑦} ↔ ran 𝑓 = {𝑦})) |
| 26 | 25 | exbidv 1850 |
. . . . . . . . . 10
⊢ (𝑓:{𝐵}⟶𝐴 → (∃𝑦{𝑦 ∣ 𝐵𝑓𝑦} = {𝑦} ↔ ∃𝑦ran 𝑓 = {𝑦})) |
| 27 | 16, 26 | syl5bb 272 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}⟶𝐴 → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦})) |
| 28 | 27 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → (∃!𝑦 𝐵𝑓𝑦 ↔ ∃𝑦ran 𝑓 = {𝑦})) |
| 29 | 15, 28 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃𝑦ran 𝑓 = {𝑦}) |
| 30 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
| 31 | 30 | snid 4208 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ {𝑦} |
| 32 | | eleq2 2690 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑓 = {𝑦} → (𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ {𝑦})) |
| 33 | 31, 32 | mpbiri 248 |
. . . . . . . . . . . . 13
⊢ (ran
𝑓 = {𝑦} → 𝑦 ∈ ran 𝑓) |
| 34 | | frn 6053 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
| 35 | 34 | sseld 3602 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (𝑦 ∈ ran 𝑓 → 𝑦 ∈ 𝐴)) |
| 36 | 33, 35 | syl5 34 |
. . . . . . . . . . . 12
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑦 ∈ 𝐴)) |
| 37 | 36 | imp 445 |
. . . . . . . . . . 11
⊢ ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑦 ∈ 𝐴) |
| 38 | 37 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦 ∈ 𝐴) |
| 39 | | dffn4 6121 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn {𝐵} ↔ 𝑓:{𝐵}–onto→ran 𝑓) |
| 40 | 8, 39 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓:{𝐵}–onto→ran 𝑓) |
| 41 | | fof 6115 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:{𝐵}–onto→ran 𝑓 → 𝑓:{𝐵}⟶ran 𝑓) |
| 42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝐵}⟶𝐴 → 𝑓:{𝐵}⟶ran 𝑓) |
| 43 | | feq3 6028 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑓 = {𝑦} → (𝑓:{𝐵}⟶ran 𝑓 ↔ 𝑓:{𝐵}⟶{𝑦})) |
| 44 | 42, 43 | syl5ibcom 235 |
. . . . . . . . . . . . 13
⊢ (𝑓:{𝐵}⟶𝐴 → (ran 𝑓 = {𝑦} → 𝑓:{𝐵}⟶{𝑦})) |
| 45 | 44 | imp 445 |
. . . . . . . . . . . 12
⊢ ((𝑓:{𝐵}⟶𝐴 ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦}) |
| 46 | 45 | adantll 750 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓:{𝐵}⟶{𝑦}) |
| 47 | 2 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝐵 ∈ 𝑊) |
| 48 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑦 ∈ V) |
| 49 | | fsng 6404 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑊 ∧ 𝑦 ∈ V) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {〈𝐵, 𝑦〉})) |
| 50 | 47, 48, 49 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑓:{𝐵}⟶{𝑦} ↔ 𝑓 = {〈𝐵, 𝑦〉})) |
| 51 | 46, 50 | mpbid 222 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → 𝑓 = {〈𝐵, 𝑦〉}) |
| 52 | 38, 51 | jca 554 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) ∧ ran 𝑓 = {𝑦}) → (𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
| 53 | 52 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → (ran 𝑓 = {𝑦} → (𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}))) |
| 54 | 53 | eximdv 1846 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → (∃𝑦ran 𝑓 = {𝑦} → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}))) |
| 55 | 29, 54 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
| 56 | | df-rex 2918 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 𝑓 = {〈𝐵, 𝑦〉} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉})) |
| 57 | 55, 56 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓:{𝐵}⟶𝐴) → ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}) |
| 58 | 57 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑓:{𝐵}⟶𝐴 → ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉})) |
| 59 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑦 ∈ V) |
| 60 | | f1osng 6177 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑊 ∧ 𝑦 ∈ V) → {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦}) |
| 61 | 2, 59, 60 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦}) |
| 62 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦}) |
| 63 | | f1oeq1 6127 |
. . . . . . . . . . . 12
⊢ (𝑓 = {〈𝐵, 𝑦〉} → (𝑓:{𝐵}–1-1-onto→{𝑦} ↔ {〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦})) |
| 64 | 63 | bicomd 213 |
. . . . . . . . . . 11
⊢ (𝑓 = {〈𝐵, 𝑦〉} → ({〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦})) |
| 65 | 64 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → ({〈𝐵, 𝑦〉}:{𝐵}–1-1-onto→{𝑦} ↔ 𝑓:{𝐵}–1-1-onto→{𝑦})) |
| 66 | 62, 65 | mpbid 222 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}–1-1-onto→{𝑦}) |
| 67 | | f1of 6137 |
. . . . . . . . 9
⊢ (𝑓:{𝐵}–1-1-onto→{𝑦} → 𝑓:{𝐵}⟶{𝑦}) |
| 68 | 66, 67 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}⟶{𝑦}) |
| 69 | 68 | 3adant2 1080 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}⟶{𝑦}) |
| 70 | | snssi 4339 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) |
| 71 | 70 | 3ad2ant2 1083 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → {𝑦} ⊆ 𝐴) |
| 72 | | fss 6056 |
. . . . . . 7
⊢ ((𝑓:{𝐵}⟶{𝑦} ∧ {𝑦} ⊆ 𝐴) → 𝑓:{𝐵}⟶𝐴) |
| 73 | 69, 71, 72 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑓 = {〈𝐵, 𝑦〉}) → 𝑓:{𝐵}⟶𝐴) |
| 74 | 73 | 3exp 1264 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐴 → (𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}⟶𝐴))) |
| 75 | 74 | rexlimdv 3030 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉} → 𝑓:{𝐵}⟶𝐴)) |
| 76 | 58, 75 | impbid 202 |
. . 3
⊢ (𝜑 → (𝑓:{𝐵}⟶𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉})) |
| 77 | 7, 76 | bitrd 268 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 ↑𝑚 {𝐵}) ↔ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉})) |
| 78 | 77 | abbi2dv 2742 |
1
⊢ (𝜑 → (𝐴 ↑𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦 ∈ 𝐴 𝑓 = {〈𝐵, 𝑦〉}}) |