![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minmar1marrep | Structured version Visualization version GIF version |
Description: The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.) |
Ref | Expression |
---|---|
minmar1marrep.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
minmar1marrep.b | ⊢ 𝐵 = (Base‘𝐴) |
minmar1marrep.q | ⊢ 𝑄 = (𝑁 matRRep 𝑅) |
minmar1marrep.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
minmar1marrep | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅) 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmar1marrep.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | minmar1marrep.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | eqid 2622 | . . . 4 ⊢ (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅) | |
4 | minmar1marrep.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | eqid 2622 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | minmar1val0 20453 | . . 3 ⊢ (𝑀 ∈ 𝐵 → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , (0g‘𝑅)), (𝑖𝑀𝑗))))) |
7 | 6 | adantl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , (0g‘𝑅)), (𝑖𝑀𝑗))))) |
8 | simpr 477 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
9 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | 9, 4 | ringidcl 18568 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑅)) |
12 | eqid 2622 | . . . 4 ⊢ (𝑁 matRRep 𝑅) = (𝑁 matRRep 𝑅) | |
13 | 1, 2, 12, 5 | marrepval0 20367 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 1 ∈ (Base‘𝑅)) → (𝑀(𝑁 matRRep 𝑅) 1 ) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , (0g‘𝑅)), (𝑖𝑀𝑗))))) |
14 | 8, 11, 13 | syl2anc 693 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀(𝑁 matRRep 𝑅) 1 ) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , (0g‘𝑅)), (𝑖𝑀𝑗))))) |
15 | 7, 14 | eqtr4d 2659 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅) 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ifcif 4086 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 Basecbs 15857 0gc0g 16100 1rcur 18501 Ringcrg 18547 Mat cmat 20213 matRRep cmarrep 20362 minMatR1 cminmar1 20439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mgp 18490 df-ur 18502 df-ring 18549 df-mat 20214 df-marrep 20364 df-minmar1 20441 |
This theorem is referenced by: minmar1cl 20457 smadiadetglem1 20477 submatminr1 29876 |
Copyright terms: Public domain | W3C validator |