![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem2 | Structured version Visualization version GIF version |
Description: Lemma for mbfi1fseq 23488. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
mbfi1fseq.4 | ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
Ref | Expression |
---|---|
mbfi1fseqlem2 | ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 10273 | . . . . . 6 ⊢ (𝑚 = 𝐴 → -𝑚 = -𝐴) | |
2 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝐴 → 𝑚 = 𝐴) | |
3 | 1, 2 | oveq12d 6668 | . . . . 5 ⊢ (𝑚 = 𝐴 → (-𝑚[,]𝑚) = (-𝐴[,]𝐴)) |
4 | 3 | eleq2d 2687 | . . . 4 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ (-𝑚[,]𝑚) ↔ 𝑥 ∈ (-𝐴[,]𝐴))) |
5 | oveq1 6657 | . . . . . 6 ⊢ (𝑚 = 𝐴 → (𝑚𝐽𝑥) = (𝐴𝐽𝑥)) | |
6 | 5, 2 | breq12d 4666 | . . . . 5 ⊢ (𝑚 = 𝐴 → ((𝑚𝐽𝑥) ≤ 𝑚 ↔ (𝐴𝐽𝑥) ≤ 𝐴)) |
7 | 6, 5, 2 | ifbieq12d 4113 | . . . 4 ⊢ (𝑚 = 𝐴 → if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚) = if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴)) |
8 | 4, 7 | ifbieq1d 4109 | . . 3 ⊢ (𝑚 = 𝐴 → if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0) = if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) |
9 | 8 | mpteq2dv 4745 | . 2 ⊢ (𝑚 = 𝐴 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
10 | mbfi1fseq.4 | . 2 ⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | |
11 | reex 10027 | . . 3 ⊢ ℝ ∈ V | |
12 | 11 | mptex 6486 | . 2 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)) ∈ V |
13 | 9, 10, 12 | fvmpt 6282 | 1 ⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ifcif 4086 class class class wbr 4653 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℝcr 9935 0cc0 9936 · cmul 9941 +∞cpnf 10071 ≤ cle 10075 -cneg 10267 / cdiv 10684 ℕcn 11020 2c2 11070 [,)cico 12177 [,]cicc 12178 ⌊cfl 12591 ↑cexp 12860 MblFncmbf 23383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-neg 10269 |
This theorem is referenced by: mbfi1fseqlem3 23484 mbfi1fseqlem4 23485 mbfi1fseqlem5 23486 mbfi1fseqlem6 23487 |
Copyright terms: Public domain | W3C validator |