| Step | Hyp | Ref
| Expression |
| 1 | | reex 10027 |
. . . . 5
⊢ ℝ
∈ V |
| 2 | 1 | mptex 6486 |
. . . 4
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V |
| 3 | | mbfi1fseq.4 |
. . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
| 4 | 2, 3 | fnmpti 6022 |
. . 3
⊢ 𝐺 Fn ℕ |
| 5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → 𝐺 Fn ℕ) |
| 6 | | mbfi1fseq.1 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 7 | | mbfi1fseq.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 8 | | mbfi1fseq.3 |
. . . . . 6
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| 9 | 6, 7, 8, 3 | mbfi1fseqlem3 23484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 10 | | elfznn0 12433 |
. . . . . . . . 9
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0) |
| 11 | 10 | nn0red 11352 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ) |
| 12 | | 2nn 11185 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
| 13 | | nnnn0 11299 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 14 | | nnexpcl 12873 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
| 15 | 12, 13, 14 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
| 16 | 15 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℕ) |
| 17 | | nndivre 11056 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑚 / (2↑𝑛)) ∈
ℝ) |
| 18 | 11, 16, 17 | syl2anr 495 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ) |
| 19 | | eqid 2622 |
. . . . . . 7
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) |
| 20 | 18, 19 | fmptd 6385 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ) |
| 21 | | frn 6053 |
. . . . . 6
⊢ ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ) |
| 22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ) |
| 23 | 9, 22 | fssd 6057 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ℝ) |
| 24 | | fzfid 12772 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin) |
| 25 | | ffn 6045 |
. . . . . . . 8
⊢ ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛)))) |
| 26 | 20, 25 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛)))) |
| 27 | | dffn4 6121 |
. . . . . . 7
⊢ ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 28 | 26, 27 | sylib 208 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 29 | | fofi 8252 |
. . . . . 6
⊢
(((0...(𝑛 ·
(2↑𝑛))) ∈ Fin
∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) |
| 30 | 24, 28, 29 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) |
| 31 | | frn 6053 |
. . . . . 6
⊢ ((𝐺‘𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → ran (𝐺‘𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 32 | 9, 31 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 33 | | ssfi 8180 |
. . . . 5
⊢ ((ran
(𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin ∧ ran (𝐺‘𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝐺‘𝑛) ∈ Fin) |
| 34 | 30, 32, 33 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ∈ Fin) |
| 35 | 6, 7, 8, 3 | mbfi1fseqlem2 23483 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))) |
| 36 | 35 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) |
| 37 | 36 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) |
| 38 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 39 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢ (𝑛𝐽𝑥) ∈ V |
| 40 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
| 41 | 39, 40 | ifex 4156 |
. . . . . . . . . . . . . 14
⊢ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V |
| 42 | | c0ex 10034 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 43 | 41, 42 | ifex 4156 |
. . . . . . . . . . . . 13
⊢ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V |
| 44 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 45 | 44 | fvmpt2 6291 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 46 | 38, 43, 45 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 47 | 37, 46 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 48 | 47 | adantlr 751 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 49 | 48 | eqeq1d 2624 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) |
| 50 | | eldifsni 4320 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ≠ 0) |
| 51 | 50 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0) |
| 52 | | neeq1 2856 |
. . . . . . . . . . . 12
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0)) |
| 53 | 51, 52 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0)) |
| 54 | | iffalse 4095 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0) |
| 55 | 54 | necon1ai 2821 |
. . . . . . . . . . 11
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛)) |
| 56 | 53, 55 | syl6 35 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) |
| 57 | 56 | pm4.71rd 667 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))) |
| 58 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)) |
| 59 | 58 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)) |
| 60 | | simpllr 799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ) |
| 61 | 60 | nnred 11035 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) |
| 62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ) |
| 63 | | rge0ssre 12280 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℝ |
| 64 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
| 65 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) |
| 66 | 7, 64, 65 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
| 67 | 63, 66 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
| 68 | | nnnn0 11299 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
| 69 | | nnexpcl 12873 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
| 70 | 12, 68, 69 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) |
| 71 | 70 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) |
| 72 | 71 | nnred 11035 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) |
| 73 | 67, 72 | remulcld 10070 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
| 74 | | reflcl 12597 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
| 76 | 75, 71 | nndivred 11069 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
| 77 | 76 | ralrimivva 2971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
| 78 | 8 | fmpt2 7237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) |
| 79 | 77, 78 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) |
| 80 | | fovrn 6804 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
| 81 | 79, 80 | syl3an1 1359 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
| 82 | 81 | 3expa 1265 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
| 83 | 82 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
| 84 | 83 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ) |
| 85 | | lemin 12023 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
| 86 | 62, 84, 62, 85 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
| 87 | 84, 62 | ifcld 4131 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) |
| 88 | 87, 62 | letri3d 10179 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) |
| 89 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
| 90 | 89 | eqeq2d 2632 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)) |
| 91 | | min2 12021 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
| 92 | 84, 62, 91 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
| 93 | 92 | biantrurd 529 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) |
| 94 | 88, 90, 93 | 3bitr4d 300 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))) |
| 95 | 62 | leidd 10594 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ≤ 𝑛) |
| 96 | 95 | biantrud 528 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
| 97 | 86, 94, 96 | 3bitr4d 300 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
| 98 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝐹‘𝑥))) |
| 99 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) |
| 100 | 99 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
| 101 | | elrege0 12278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
| 102 | 100, 101 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
| 103 | 102 | simpld 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 104 | 103 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 105 | 60, 15 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℕ) |
| 106 | 105 | nnred 11035 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℝ) |
| 107 | 104, 106 | remulcld 10070 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ) |
| 108 | | reflcl 12597 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) |
| 110 | 105 | nngt0d 11064 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛)) |
| 111 | | lemuldiv 10903 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℝ ∧
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
| 112 | 61, 109, 106, 110, 111 | syl112anc 1330 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
| 113 | | lemul1 10875 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
| 114 | 61, 104, 106, 110, 113 | syl112anc 1330 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
| 115 | | nnmulcl 11043 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ℕ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑛 ·
(2↑𝑛)) ∈
ℕ) |
| 116 | 15, 115 | mpdan 702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 · (2↑𝑛)) ∈
ℕ) |
| 117 | 60, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ) |
| 118 | 117 | nnzd 11481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ) |
| 119 | | flge 12606 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
| 120 | 107, 118,
119 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
| 121 | 114, 120 | bitrd 268 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
| 122 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 123 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 124 | 123 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 125 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑚 = 𝑛) |
| 126 | 125 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛)) |
| 127 | 124, 126 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝑛))) |
| 128 | 127 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝑛)))) |
| 129 | 128, 126 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
| 130 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V |
| 131 | 129, 8, 130 | ovmpt2a 6791 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
| 132 | 60, 122, 131 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
| 133 | 132 | breq2d 4665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
| 134 | 112, 121,
133 | 3bitr4d 300 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
| 135 | 98, 134 | sylan9bbr 737 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
| 136 | 122 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ) |
| 137 | | iftrue 4092 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) |
| 138 | 137 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) |
| 139 | 136, 138 | eleqtrrd 2704 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
| 140 | 139 | biantrurd 529 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
| 141 | 97, 135, 140 | 3bitr2d 296 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
| 142 | 32 | ssdifssd 3748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 143 | 142 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
| 144 | 19 | rnmpt 5371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ran
(𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))} |
| 145 | 144 | abeq2i 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))) |
| 146 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ) |
| 147 | 146 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ) |
| 148 | 147 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ) |
| 149 | 15 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ) |
| 150 | 149 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ) |
| 151 | 149 | nnne0d 11065 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0) |
| 152 | 148, 150,
151 | divcan1d 10802 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚) |
| 153 | 152, 147 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ) |
| 154 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛))) |
| 155 | 154 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)) |
| 156 | 153, 155 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
| 157 | 156 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
| 158 | 145, 157 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
| 159 | 158 | imp 445 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
| 160 | 143, 159 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
| 161 | 160 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
| 162 | | flbi 12617 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
| 163 | 107, 161,
162 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
| 164 | 163 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
| 165 | | neeq1 2856 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛)) |
| 166 | 165 | biimparc 504 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛) |
| 167 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛) |
| 168 | 167 | necon1ai 2821 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛) |
| 169 | 166, 168 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) |
| 170 | 169 | iftrued 4094 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) |
| 171 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) |
| 172 | 170, 171 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) |
| 173 | 172, 169 | eqbrtrrd 4677 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘 ≤ 𝑛) |
| 174 | 173, 172 | jca 554 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)) |
| 175 | 174 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
| 176 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛)) |
| 177 | 176 | biimparc 504 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) |
| 178 | 177 | iftrued 4094 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) |
| 179 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) |
| 180 | 178, 179 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) |
| 181 | 175, 180 | impbid1 215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
| 182 | 181 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
| 183 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺‘𝑛)) |
| 184 | | nnre 11027 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
| 185 | 184 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) |
| 186 | 82, 185, 91 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
| 187 | 13 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0) |
| 188 | 187 | nn0ge0d 11354 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛) |
| 189 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) |
| 190 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) |
| 191 | 189, 190 | ifboth 4124 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) |
| 192 | 186, 188,
191 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) |
| 193 | 47, 192 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) |
| 194 | 193 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) |
| 195 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺‘𝑛):ℝ⟶ℝ → (𝐺‘𝑛) Fn ℝ) |
| 196 | 23, 195 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) Fn ℝ) |
| 197 | | breq1 4656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ((𝐺‘𝑛)‘𝑥) → (𝑘 ≤ 𝑛 ↔ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
| 198 | 197 | ralrn 6362 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
| 199 | 196, 198 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
| 200 | 194, 199 | mpbird 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛) |
| 201 | 200 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺‘𝑛)) → 𝑘 ≤ 𝑛) |
| 202 | 183, 201 | sylan2 491 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ≤ 𝑛) |
| 203 | 202 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → 𝑘 ≤ 𝑛) |
| 204 | 203 | biantrurd 529 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
| 205 | 132 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘)) |
| 206 | 109 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℂ) |
| 207 | 32, 22 | sstrd 3613 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ℝ) |
| 208 | 207 | ssdifssd 3748 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆
ℝ) |
| 209 | 208 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ℝ) |
| 210 | 209 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ) |
| 211 | 210 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ) |
| 212 | 105 | nncnd 11036 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℂ) |
| 213 | 105 | nnne0d 11065 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0) |
| 214 | 206, 211,
212, 213 | divmul3d 10835 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
| 215 | 205, 214 | bitrd 268 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
| 216 | 215 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
| 217 | 182, 204,
216 | 3bitr2d 296 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
| 218 | | ifnefalse 4098 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ≠ 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) |
| 219 | 218 | eleq2d 2687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
| 220 | 105 | nnrecred 11066 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℝ) |
| 221 | 210, 220 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ) |
| 222 | 221 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈
ℝ*) |
| 223 | | elioomnf 12268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
| 224 | 222, 223 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
| 225 | 99 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞)) |
| 226 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹:ℝ⟶(0[,)+∞)
→ 𝐹 Fn
ℝ) |
| 227 | 225, 226 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ) |
| 228 | | elpreima 6337 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
| 229 | 227, 228 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
| 230 | 122 | biantrurd 529 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
| 231 | 229, 230 | bitr4d 271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) |
| 232 | 104 | biantrurd 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
| 233 | 224, 231,
232 | 3bitr4d 300 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))))) |
| 234 | | ltmul1 10873 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) |
| 235 | 104, 221,
106, 110, 234 | syl112anc 1330 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) |
| 236 | 220 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℂ) |
| 237 | 211, 236,
212 | adddird 10065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛)))) |
| 238 | 212, 213 | recid2d 10797 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1) |
| 239 | 238 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1)) |
| 240 | 237, 239 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1)) |
| 241 | 240 | breq2d 4665 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
| 242 | 233, 235,
241 | 3bitrd 294 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
| 243 | 219, 242 | sylan9bbr 737 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
| 244 | | lemul1 10875 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
| 245 | 210, 104,
106, 110, 244 | syl112anc 1330 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
| 246 | 245 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
| 247 | 243, 246 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛))))) |
| 248 | | ancom 466 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛))) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
| 249 | 247, 248 | syl6bb 276 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
| 250 | 164, 217,
249 | 3bitr4d 300 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
| 251 | 141, 250 | pm2.61dane 2881 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
| 252 | | eldif 3584 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)))) |
| 253 | 210 | rexrd 10089 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*) |
| 254 | | elioomnf 12268 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
| 255 | 253, 254 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
| 256 | | elpreima 6337 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
| 257 | 227, 256 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
| 258 | 122 | biantrurd 529 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
| 259 | 257, 258 | bitr4d 271 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) ∈ (-∞(,)𝑘))) |
| 260 | 104 | biantrurd 529 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < 𝑘 ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
| 261 | 255, 259,
260 | 3bitr4d 300 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) < 𝑘)) |
| 262 | 261 | notbid 308 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹‘𝑥) < 𝑘)) |
| 263 | 210, 104 | lenltd 10183 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝑘)) |
| 264 | 262, 263 | bitr4d 271 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹‘𝑥))) |
| 265 | 264 | anbi2d 740 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
| 266 | 252, 265 | syl5bb 272 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
| 267 | 251, 266 | bitr4d 271 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
| 268 | 59, 267 | sylan9bbr 737 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
| 269 | 268 | pm5.32da 673 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
| 270 | 49, 57, 269 | 3bitrd 294 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
| 271 | 270 | pm5.32da 673 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
| 272 | 23 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛):ℝ⟶ℝ) |
| 273 | 272, 195 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) |
| 274 | | fniniseg 6338 |
. . . . . . . 8
⊢ ((𝐺‘𝑛) Fn ℝ → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
| 275 | 273, 274 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
| 276 | | elin 3796 |
. . . . . . . 8
⊢ (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
| 277 | 184 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑛 ∈ ℝ) |
| 278 | 277 | renegcld 10457 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → -𝑛 ∈ ℝ) |
| 279 | | iccmbl 23334 |
. . . . . . . . . . . . 13
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol) |
| 280 | 278, 277,
279 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol) |
| 281 | | mblss 23299 |
. . . . . . . . . . . 12
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ) |
| 282 | 280, 281 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) |
| 283 | 282 | sseld 3602 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ)) |
| 284 | 283 | adantrd 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ)) |
| 285 | 284 | pm4.71rd 667 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
| 286 | 276, 285 | syl5bb 272 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
| 287 | 271, 275,
286 | 3bitr4d 300 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
| 288 | 287 | eqrdv 2620 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
| 289 | | rembl 23308 |
. . . . . . . . 9
⊢ ℝ
∈ dom vol |
| 290 | | fss 6056 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
| 291 | 7, 63, 290 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 292 | | mbfima 23399 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) |
| 293 | 6, 291, 292 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) |
| 294 | | ifcl 4130 |
. . . . . . . . 9
⊢ ((ℝ
∈ dom vol ∧ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) →
if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) |
| 295 | 289, 293,
294 | sylancr 695 |
. . . . . . . 8
⊢ (𝜑 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) |
| 296 | | mbfima 23399 |
. . . . . . . . 9
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) |
| 297 | 6, 291, 296 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) |
| 298 | | difmbl 23311 |
. . . . . . . 8
⊢
((if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
| 299 | 295, 297,
298 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
| 300 | 299 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
| 301 | | inmbl 23310 |
. . . . . 6
⊢ (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) |
| 302 | 280, 300,
301 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) |
| 303 | 288, 302 | eqeltrd 2701 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol) |
| 304 | | mblvol 23298 |
. . . . . 6
⊢ ((◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) |
| 305 | 303, 304 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) |
| 306 | 196 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) |
| 307 | 306, 274 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
| 308 | 82, 185 | ifcld 4131 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) |
| 309 | | 0re 10040 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 310 | | ifcl 4130 |
. . . . . . . . . . . . . . 15
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) |
| 311 | 308, 309,
310 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) |
| 312 | 44 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 313 | 38, 311, 312 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 314 | 37, 313 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 315 | 314 | adantlr 751 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
| 316 | 315 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) |
| 317 | 316, 56 | sylbid 230 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) |
| 318 | 317 | expimpd 629 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛))) |
| 319 | 307, 318 | sylbid 230 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛))) |
| 320 | 319 | ssrdv 3609 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛)) |
| 321 | | iccssre 12255 |
. . . . . . 7
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ) |
| 322 | 278, 277,
321 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) |
| 323 | | mblvol 23298 |
. . . . . . . 8
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) |
| 324 | 280, 323 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) |
| 325 | | iccvolcl 23335 |
. . . . . . . 8
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) →
(vol‘(-𝑛[,]𝑛)) ∈
ℝ) |
| 326 | 278, 277,
325 | syl2anc 693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ) |
| 327 | 324, 326 | eqeltrrd 2702 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) |
| 328 | | ovolsscl 23254 |
. . . . . 6
⊢ (((◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
| 329 | 320, 322,
327, 328 | syl3anc 1326 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
| 330 | 305, 329 | eqeltrd 2701 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
| 331 | 23, 34, 303, 330 | i1fd 23448 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ dom
∫1) |
| 332 | 331 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐺‘𝑛) ∈ dom
∫1) |
| 333 | | ffnfv 6388 |
. 2
⊢ (𝐺:ℕ⟶dom
∫1 ↔ (𝐺
Fn ℕ ∧ ∀𝑛
∈ ℕ (𝐺‘𝑛) ∈ dom
∫1)) |
| 334 | 5, 332, 333 | sylanbrc 698 |
1
⊢ (𝜑 → 𝐺:ℕ⟶dom
∫1) |