![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfi1fseqlem1 | Structured version Visualization version GIF version |
Description: Lemma for mbfi1fseq 23488. (Contributed by Mario Carneiro, 16-Aug-2014.) |
Ref | Expression |
---|---|
mbfi1fseq.1 | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
mbfi1fseq.2 | ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
mbfi1fseq.3 | ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
Ref | Expression |
---|---|
mbfi1fseqlem1 | ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfi1fseq.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | |
2 | simpr 477 | . . . . . . . . . 10 ⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) | |
3 | ffvelrn 6357 | . . . . . . . . . 10 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) | |
4 | 1, 2, 3 | syl2an 494 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
5 | elrege0 12278 | . . . . . . . . 9 ⊢ ((𝐹‘𝑦) ∈ (0[,)+∞) ↔ ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) | |
6 | 4, 5 | sylib 208 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦))) |
7 | 6 | simpld 475 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
8 | 2nn 11185 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
9 | nnnn0 11299 | . . . . . . . . . 10 ⊢ (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0) | |
10 | nnexpcl 12873 | . . . . . . . . . 10 ⊢ ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ) | |
11 | 8, 9, 10 | sylancr 695 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ) |
12 | 11 | ad2antrl 764 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ) |
13 | 12 | nnred 11035 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ) |
14 | 7, 13 | remulcld 10070 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
15 | reflcl 12597 | . . . . . 6 ⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
17 | 16, 12 | nndivred 11069 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
18 | 12 | nnnn0d 11351 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0) |
19 | 18 | nn0ge0d 11354 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚)) |
20 | mulge0 10546 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) | |
21 | 6, 13, 19, 20 | syl12anc 1324 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) |
22 | flge0nn0 12621 | . . . . . . 7 ⊢ ((((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑦) · (2↑𝑚))) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) | |
23 | 14, 21, 22 | syl2anc 693 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℕ0) |
24 | 23 | nn0ge0d 11354 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) |
25 | 12 | nngt0d 11064 | . . . . 5 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚)) |
26 | divge0 10892 | . . . . 5 ⊢ ((((⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹‘𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
27 | 16, 24, 13, 25, 26 | syl22anc 1327 | . . . 4 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
28 | elrege0 12278 | . . . 4 ⊢ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)))) | |
29 | 17, 27, 28 | sylanbrc 698 | . . 3 ⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
30 | 29 | ralrimivva 2971 | . 2 ⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞)) |
31 | mbfi1fseq.3 | . . 3 ⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | |
32 | 31 | fmpt2 7237 | . 2 ⊢ (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
33 | 30, 32 | sylib 208 | 1 ⊢ (𝜑 → 𝐽:(ℕ × ℝ)⟶(0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 class class class wbr 4653 × cxp 5112 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ℝcr 9935 0cc0 9936 · cmul 9941 +∞cpnf 10071 < clt 10074 ≤ cle 10075 / cdiv 10684 ℕcn 11020 2c2 11070 ℕ0cn0 11292 [,)cico 12177 ⌊cfl 12591 ↑cexp 12860 MblFncmbf 23383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-ico 12181 df-fl 12593 df-seq 12802 df-exp 12861 |
This theorem is referenced by: mbfi1fseqlem5 23486 |
Copyright terms: Public domain | W3C validator |