MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem1 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem1 23482
Description: Lemma for mbfi1fseq 23488. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
Assertion
Ref Expression
mbfi1fseqlem1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Distinct variable groups:   𝑦,𝑚,𝐹   𝑚,𝐽   𝜑,𝑚,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem mbfi1fseqlem1
StepHypRef Expression
1 mbfi1fseq.2 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶(0[,)+∞))
2 simpr 477 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3 ffvelrn 6357 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
41, 2, 3syl2an 494 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
5 elrege0 12278 . . . . . . . . 9 ((𝐹𝑦) ∈ (0[,)+∞) ↔ ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
64, 5sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)))
76simpld 475 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
8 2nn 11185 . . . . . . . . . 10 2 ∈ ℕ
9 nnnn0 11299 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
10 nnexpcl 12873 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
118, 9, 10sylancr 695 . . . . . . . . 9 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1211ad2antrl 764 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1312nnred 11035 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
147, 13remulcld 10070 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
15 reflcl 12597 . . . . . 6 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1614, 15syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1716, 12nndivred 11069 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
1812nnnn0d 11351 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ0)
1918nn0ge0d 11354 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (2↑𝑚))
20 mulge0 10546 . . . . . . . 8 ((((𝐹𝑦) ∈ ℝ ∧ 0 ≤ (𝐹𝑦)) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 ≤ (2↑𝑚))) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
216, 13, 19, 20syl12anc 1324 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((𝐹𝑦) · (2↑𝑚)))
22 flge0nn0 12621 . . . . . . 7 ((((𝐹𝑦) · (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑦) · (2↑𝑚))) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2314, 21, 22syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℕ0)
2423nn0ge0d 11354 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚))))
2512nngt0d 11064 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 < (2↑𝑚))
26 divge0 10892 . . . . 5 ((((⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ ∧ 0 ≤ (⌊‘((𝐹𝑦) · (2↑𝑚)))) ∧ ((2↑𝑚) ∈ ℝ ∧ 0 < (2↑𝑚))) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
2716, 24, 13, 25, 26syl22anc 1327 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
28 elrege0 12278 . . . 4 (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ (((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ∧ 0 ≤ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚))))
2917, 27, 28sylanbrc 698 . . 3 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
3029ralrimivva 2971 . 2 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞))
31 mbfi1fseq.3 . . 3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
3231fmpt2 7237 . 2 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ (0[,)+∞) ↔ 𝐽:(ℕ × ℝ)⟶(0[,)+∞))
3330, 32sylib 208 1 (𝜑𝐽:(ℕ × ℝ)⟶(0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  0cc0 9936   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  [,)cico 12177  cfl 12591  cexp 12860  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by:  mbfi1fseqlem5  23486
  Copyright terms: Public domain W3C validator