MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem2 Structured version   Visualization version   Unicode version

Theorem mbfi1fseqlem2 23483
Description: Lemma for mbfi1fseq 23488. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem2  |-  ( A  e.  NN  ->  ( G `  A )  =  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) )
Distinct variable groups:    x, m, y, F    x, G    m, J    ph, m, x, y    A, m, x, y
Allowed substitution hints:    G( y, m)    J( x, y)

Proof of Theorem mbfi1fseqlem2
StepHypRef Expression
1 negeq 10273 . . . . . 6  |-  ( m  =  A  ->  -u m  =  -u A )
2 id 22 . . . . . 6  |-  ( m  =  A  ->  m  =  A )
31, 2oveq12d 6668 . . . . 5  |-  ( m  =  A  ->  ( -u m [,] m )  =  ( -u A [,] A ) )
43eleq2d 2687 . . . 4  |-  ( m  =  A  ->  (
x  e.  ( -u m [,] m )  <->  x  e.  ( -u A [,] A
) ) )
5 oveq1 6657 . . . . . 6  |-  ( m  =  A  ->  (
m J x )  =  ( A J x ) )
65, 2breq12d 4666 . . . . 5  |-  ( m  =  A  ->  (
( m J x )  <_  m  <->  ( A J x )  <_  A ) )
76, 5, 2ifbieq12d 4113 . . . 4  |-  ( m  =  A  ->  if ( ( m J x )  <_  m ,  ( m J x ) ,  m
)  =  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) )
84, 7ifbieq1d 4109 . . 3  |-  ( m  =  A  ->  if ( x  e.  ( -u m [,] m ) ,  if ( ( m J x )  <_  m ,  ( m J x ) ,  m ) ,  0 )  =  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) )
98mpteq2dv 4745 . 2  |-  ( m  =  A  ->  (
x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) )
10 mbfi1fseq.4 . 2  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
11 reex 10027 . . 3  |-  RR  e.  _V
1211mptex 6486 . 2  |-  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) )  e.  _V
139, 10, 12fvmpt 6282 1  |-  ( A  e.  NN  ->  ( G `  A )  =  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936    x. cmul 9941   +oocpnf 10071    <_ cle 10075   -ucneg 10267    / cdiv 10684   NNcn 11020   2c2 11070   [,)cico 12177   [,]cicc 12178   |_cfl 12591   ^cexp 12860  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-neg 10269
This theorem is referenced by:  mbfi1fseqlem3  23484  mbfi1fseqlem4  23485  mbfi1fseqlem5  23486  mbfi1fseqlem6  23487
  Copyright terms: Public domain W3C validator