![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeq | Structured version Visualization version GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6658 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 10269 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 10269 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2681 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 (class class class)co 6650 0cc0 9936 − cmin 10266 -cneg 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-neg 10269 |
This theorem is referenced by: negeqi 10274 negeqd 10275 neg11 10332 renegcl 10344 negn0 10459 negf1o 10460 negfi 10971 fiminre 10972 infm3lem 10981 infm3 10982 riotaneg 11002 negiso 11003 infrenegsup 11006 elz 11379 elz2 11394 znegcl 11412 zindd 11478 zriotaneg 11491 ublbneg 11773 eqreznegel 11774 supminf 11775 zsupss 11777 qnegcl 11805 xnegeq 12038 ceilval 12639 expneg 12868 m1expcl2 12882 sqeqor 12978 sqrmo 13992 dvdsnegb 14999 lcmneg 15316 pcexp 15564 pcneg 15578 mulgneg2 17575 negfcncf 22722 xrhmeo 22745 evth2 22759 volsup2 23373 mbfi1fseqlem2 23483 mbfi1fseq 23488 lhop2 23778 lognegb 24336 lgsdir2lem4 25053 rpvmasum2 25201 ex-ceil 27305 hgt749d 30727 itgaddnclem2 33469 ftc1anclem5 33489 areacirc 33505 renegclALT 34249 rexzrexnn0 37368 dvdsrabdioph 37374 monotoddzzfi 37507 monotoddzz 37508 oddcomabszz 37509 infnsuprnmpt 39465 supminfrnmpt 39672 supminfxr 39694 etransclem17 40468 etransclem46 40497 etransclem47 40498 2zrngagrp 41943 digval 42392 |
Copyright terms: Public domain | W3C validator |