| Step | Hyp | Ref
| Expression |
| 1 | | pwsiga 30193 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
| 2 | | elrnsiga 30189 |
. . . . . 6
⊢
(𝒫 𝑂 ∈
(sigAlgebra‘𝑂) →
𝒫 𝑂 ∈ ∪ ran sigAlgebra) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ ∪ ran
sigAlgebra) |
| 4 | | brsigarn 30247 |
. . . . . 6
⊢
𝔅ℝ ∈
(sigAlgebra‘ℝ) |
| 5 | | elrnsiga 30189 |
. . . . . 6
⊢
(𝔅ℝ ∈ (sigAlgebra‘ℝ) →
𝔅ℝ ∈ ∪ ran
sigAlgebra) |
| 6 | 4, 5 | mp1i 13 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → 𝔅ℝ ∈
∪ ran sigAlgebra) |
| 7 | 3, 6 | ismbfm 30314 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅ℝ) ↔
(𝑓 ∈ (∪ 𝔅ℝ ↑𝑚
∪ 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂))) |
| 8 | | unibrsiga 30249 |
. . . . . . . . . 10
⊢ ∪ 𝔅ℝ = ℝ |
| 9 | | reex 10027 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
| 10 | 8, 9 | eqeltri 2697 |
. . . . . . . . 9
⊢ ∪ 𝔅ℝ ∈ V |
| 11 | | unipw 4918 |
. . . . . . . . . 10
⊢ ∪ 𝒫 𝑂 = 𝑂 |
| 12 | | elex 3212 |
. . . . . . . . . 10
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ V) |
| 13 | 11, 12 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝑂 ∈ 𝑉 → ∪
𝒫 𝑂 ∈
V) |
| 14 | | elmapg 7870 |
. . . . . . . . 9
⊢ ((∪ 𝔅ℝ ∈ V ∧ ∪ 𝒫 𝑂 ∈ V) → (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) ↔ 𝑓:∪ 𝒫 𝑂⟶∪ 𝔅ℝ)) |
| 15 | 10, 13, 14 | sylancr 695 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) ↔ 𝑓:∪ 𝒫 𝑂⟶∪ 𝔅ℝ)) |
| 16 | 11 | feq2i 6037 |
. . . . . . . 8
⊢ (𝑓:∪
𝒫 𝑂⟶∪ 𝔅ℝ ↔ 𝑓:𝑂⟶∪
𝔅ℝ) |
| 17 | 15, 16 | syl6bb 276 |
. . . . . . 7
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) ↔ 𝑓:𝑂⟶∪
𝔅ℝ)) |
| 18 | | ffn 6045 |
. . . . . . 7
⊢ (𝑓:𝑂⟶∪
𝔅ℝ → 𝑓 Fn 𝑂) |
| 19 | 17, 18 | syl6bi 243 |
. . . . . 6
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) → 𝑓 Fn 𝑂)) |
| 20 | | elpreima 6337 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑂 → (𝑦 ∈ (◡𝑓 “ 𝑥) ↔ (𝑦 ∈ 𝑂 ∧ (𝑓‘𝑦) ∈ 𝑥))) |
| 21 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑂 ∧ (𝑓‘𝑦) ∈ 𝑥) → 𝑦 ∈ 𝑂) |
| 22 | 20, 21 | syl6bi 243 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑂 → (𝑦 ∈ (◡𝑓 “ 𝑥) → 𝑦 ∈ 𝑂)) |
| 23 | 22 | ssrdv 3609 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑂 → (◡𝑓 “ 𝑥) ⊆ 𝑂) |
| 24 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
| 25 | 24 | cnvex 7113 |
. . . . . . . . . 10
⊢ ◡𝑓 ∈ V |
| 26 | | imaexg 7103 |
. . . . . . . . . 10
⊢ (◡𝑓 ∈ V → (◡𝑓 “ 𝑥) ∈ V) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
⊢ (◡𝑓 “ 𝑥) ∈ V |
| 28 | 27 | elpw 4164 |
. . . . . . . 8
⊢ ((◡𝑓 “ 𝑥) ∈ 𝒫 𝑂 ↔ (◡𝑓 “ 𝑥) ⊆ 𝑂) |
| 29 | 23, 28 | sylibr 224 |
. . . . . . 7
⊢ (𝑓 Fn 𝑂 → (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂) |
| 30 | 29 | ralrimivw 2967 |
. . . . . 6
⊢ (𝑓 Fn 𝑂 → ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂) |
| 31 | 19, 30 | syl6 35 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) → ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂)) |
| 32 | 31 | pm4.71d 666 |
. . . 4
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) ↔ (𝑓 ∈ (∪
𝔅ℝ ↑𝑚 ∪ 𝒫 𝑂) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝑓 “ 𝑥) ∈ 𝒫 𝑂))) |
| 33 | 7, 32 | bitr4d 271 |
. . 3
⊢ (𝑂 ∈ 𝑉 → (𝑓 ∈ (𝒫 𝑂MblFnM𝔅ℝ) ↔
𝑓 ∈ (∪ 𝔅ℝ ↑𝑚
∪ 𝒫 𝑂))) |
| 34 | 33 | eqrdv 2620 |
. 2
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) = (∪ 𝔅ℝ ↑𝑚
∪ 𝒫 𝑂)) |
| 35 | 8, 11 | oveq12i 6662 |
. 2
⊢ (∪ 𝔅ℝ ↑𝑚
∪ 𝒫 𝑂) = (ℝ ↑𝑚
𝑂) |
| 36 | 34, 35 | syl6eq 2672 |
1
⊢ (𝑂 ∈ 𝑉 → (𝒫 𝑂MblFnM𝔅ℝ) =
(ℝ ↑𝑚 𝑂)) |