| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmcnt | Structured version Visualization version Unicode version | ||
| Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.) |
| Ref | Expression |
|---|---|
| mbfmcnt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsiga 30193 |
. . . . . 6
| |
| 2 | elrnsiga 30189 |
. . . . . 6
| |
| 3 | 1, 2 | syl 17 |
. . . . 5
|
| 4 | brsigarn 30247 |
. . . . . 6
| |
| 5 | elrnsiga 30189 |
. . . . . 6
| |
| 6 | 4, 5 | mp1i 13 |
. . . . 5
|
| 7 | 3, 6 | ismbfm 30314 |
. . . 4
|
| 8 | unibrsiga 30249 |
. . . . . . . . . 10
| |
| 9 | reex 10027 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | eqeltri 2697 |
. . . . . . . . 9
|
| 11 | unipw 4918 |
. . . . . . . . . 10
| |
| 12 | elex 3212 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | syl5eqel 2705 |
. . . . . . . . 9
|
| 14 | elmapg 7870 |
. . . . . . . . 9
| |
| 15 | 10, 13, 14 | sylancr 695 |
. . . . . . . 8
|
| 16 | 11 | feq2i 6037 |
. . . . . . . 8
|
| 17 | 15, 16 | syl6bb 276 |
. . . . . . 7
|
| 18 | ffn 6045 |
. . . . . . 7
| |
| 19 | 17, 18 | syl6bi 243 |
. . . . . 6
|
| 20 | elpreima 6337 |
. . . . . . . . . 10
| |
| 21 | simpl 473 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl6bi 243 |
. . . . . . . . 9
|
| 23 | 22 | ssrdv 3609 |
. . . . . . . 8
|
| 24 | vex 3203 |
. . . . . . . . . . 11
| |
| 25 | 24 | cnvex 7113 |
. . . . . . . . . 10
|
| 26 | imaexg 7103 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
|
| 28 | 27 | elpw 4164 |
. . . . . . . 8
|
| 29 | 23, 28 | sylibr 224 |
. . . . . . 7
|
| 30 | 29 | ralrimivw 2967 |
. . . . . 6
|
| 31 | 19, 30 | syl6 35 |
. . . . 5
|
| 32 | 31 | pm4.71d 666 |
. . . 4
|
| 33 | 7, 32 | bitr4d 271 |
. . 3
|
| 34 | 33 | eqrdv 2620 |
. 2
|
| 35 | 8, 11 | oveq12i 6662 |
. 2
|
| 36 | 34, 35 | syl6eq 2672 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ioo 12179 df-topgen 16104 df-top 20699 df-bases 20750 df-siga 30171 df-sigagen 30202 df-brsiga 30245 df-mbfm 30313 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |