MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1eval Structured version   Visualization version   GIF version

Theorem minmar1eval 20455
Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a 𝐴 = (𝑁 Mat 𝑅)
minmar1fval.b 𝐵 = (Base‘𝐴)
minmar1fval.q 𝑄 = (𝑁 minMatR1 𝑅)
minmar1fval.o 1 = (1r𝑅)
minmar1fval.z 0 = (0g𝑅)
Assertion
Ref Expression
minmar1eval ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))

Proof of Theorem minmar1eval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 minmar1fval.b . . . . 5 𝐵 = (Base‘𝐴)
3 minmar1fval.q . . . . 5 𝑄 = (𝑁 minMatR1 𝑅)
4 minmar1fval.o . . . . 5 1 = (1r𝑅)
5 minmar1fval.z . . . . 5 0 = (0g𝑅)
61, 2, 3, 4, 5minmar1val 20454 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
763expb 1266 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
873adant3 1081 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
9 simp3l 1089 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
10 simpl3r 1117 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑖 = 𝐼) → 𝐽𝑁)
11 fvex 6201 . . . . . . 7 (1r𝑅) ∈ V
124, 11eqeltri 2697 . . . . . 6 1 ∈ V
13 fvex 6201 . . . . . . 7 (0g𝑅) ∈ V
145, 13eqeltri 2697 . . . . . 6 0 ∈ V
1512, 14ifex 4156 . . . . 5 if(𝑗 = 𝐿, 1 , 0 ) ∈ V
16 ovex 6678 . . . . 5 (𝑖𝑀𝑗) ∈ V
1715, 16ifex 4156 . . . 4 if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V
1817a1i 11 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) ∈ V)
19 eqeq1 2626 . . . . . 6 (𝑖 = 𝐼 → (𝑖 = 𝐾𝐼 = 𝐾))
2019adantr 481 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝐾𝐼 = 𝐾))
21 eqeq1 2626 . . . . . . 7 (𝑗 = 𝐽 → (𝑗 = 𝐿𝐽 = 𝐿))
2221adantl 482 . . . . . 6 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑗 = 𝐿𝐽 = 𝐿))
2322ifbid 4108 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑗 = 𝐿, 1 , 0 ) = if(𝐽 = 𝐿, 1 , 0 ))
24 oveq12 6659 . . . . 5 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
2520, 23, 24ifbieq12d 4113 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
2625adantl 482 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
279, 10, 18, 26ovmpt2dv2 6794 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → ((𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽))))
288, 27mpd 15 1 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  0gc0g 16100  1rcur 18501   Mat cmat 20213   minMatR1 cminmar1 20439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-mat 20214  df-minmar1 20441
This theorem is referenced by:  madjusmdetlem1  29893
  Copyright terms: Public domain W3C validator