MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1eval Structured version   Visualization version   Unicode version

Theorem minmar1eval 20455
Description: An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a  |-  A  =  ( N Mat  R )
minmar1fval.b  |-  B  =  ( Base `  A
)
minmar1fval.q  |-  Q  =  ( N minMatR1  R )
minmar1fval.o  |-  .1.  =  ( 1r `  R )
minmar1fval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
minmar1eval  |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  -> 
( I ( K ( Q `  M
) L ) J )  =  if ( I  =  K ,  if ( J  =  L ,  .1.  ,  .0.  ) ,  ( I M J ) ) )

Proof of Theorem minmar1eval
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minmar1fval.a . . . . 5  |-  A  =  ( N Mat  R )
2 minmar1fval.b . . . . 5  |-  B  =  ( Base `  A
)
3 minmar1fval.q . . . . 5  |-  Q  =  ( N minMatR1  R )
4 minmar1fval.o . . . . 5  |-  .1.  =  ( 1r `  R )
5 minmar1fval.z . . . . 5  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5minmar1val 20454 . . . 4  |-  ( ( M  e.  B  /\  K  e.  N  /\  L  e.  N )  ->  ( K ( Q `
 M ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) )
763expb 1266 . . 3  |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
) )  ->  ( K ( Q `  M ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) )
873adant3 1081 . 2  |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  -> 
( K ( Q `
 M ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) ) )
9 simp3l 1089 . . 3  |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  ->  I  e.  N )
10 simpl3r 1117 . . 3  |-  ( ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  /\  i  =  I )  ->  J  e.  N )
11 fvex 6201 . . . . . . 7  |-  ( 1r
`  R )  e. 
_V
124, 11eqeltri 2697 . . . . . 6  |-  .1.  e.  _V
13 fvex 6201 . . . . . . 7  |-  ( 0g
`  R )  e. 
_V
145, 13eqeltri 2697 . . . . . 6  |-  .0.  e.  _V
1512, 14ifex 4156 . . . . 5  |-  if ( j  =  L ,  .1.  ,  .0.  )  e. 
_V
16 ovex 6678 . . . . 5  |-  ( i M j )  e. 
_V
1715, 16ifex 4156 . . . 4  |-  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) )  e.  _V
1817a1i 11 . . 3  |-  ( ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  /\  ( i  =  I  /\  j  =  J ) )  ->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) )  e.  _V )
19 eqeq1 2626 . . . . . 6  |-  ( i  =  I  ->  (
i  =  K  <->  I  =  K ) )
2019adantr 481 . . . . 5  |-  ( ( i  =  I  /\  j  =  J )  ->  ( i  =  K  <-> 
I  =  K ) )
21 eqeq1 2626 . . . . . . 7  |-  ( j  =  J  ->  (
j  =  L  <->  J  =  L ) )
2221adantl 482 . . . . . 6  |-  ( ( i  =  I  /\  j  =  J )  ->  ( j  =  L  <-> 
J  =  L ) )
2322ifbid 4108 . . . . 5  |-  ( ( i  =  I  /\  j  =  J )  ->  if ( j  =  L ,  .1.  ,  .0.  )  =  if ( J  =  L ,  .1.  ,  .0.  )
)
24 oveq12 6659 . . . . 5  |-  ( ( i  =  I  /\  j  =  J )  ->  ( i M j )  =  ( I M J ) )
2520, 23, 24ifbieq12d 4113 . . . 4  |-  ( ( i  =  I  /\  j  =  J )  ->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) )  =  if ( I  =  K ,  if ( J  =  L ,  .1.  ,  .0.  ) ,  ( I M J ) ) )
2625adantl 482 . . 3  |-  ( ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  /\  ( i  =  I  /\  j  =  J ) )  ->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) )  =  if ( I  =  K ,  if ( J  =  L ,  .1.  ,  .0.  ) ,  ( I M J ) ) )
279, 10, 18, 26ovmpt2dv2 6794 . 2  |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  -> 
( ( K ( Q `  M ) L )  =  ( i  e.  N , 
j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  .1.  ,  .0.  ) ,  ( i M j ) ) )  ->  (
I ( K ( Q `  M ) L ) J )  =  if ( I  =  K ,  if ( J  =  L ,  .1.  ,  .0.  ) ,  ( I M J ) ) ) )
288, 27mpd 15 1  |-  ( ( M  e.  B  /\  ( K  e.  N  /\  L  e.  N
)  /\  ( I  e.  N  /\  J  e.  N ) )  -> 
( I ( K ( Q `  M
) L ) J )  =  if ( I  =  K ,  if ( J  =  L ,  .1.  ,  .0.  ) ,  ( I M J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   0gc0g 16100   1rcur 18501   Mat cmat 20213   minMatR1 cminmar1 20439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-mat 20214  df-minmar1 20441
This theorem is referenced by:  madjusmdetlem1  29893
  Copyright terms: Public domain W3C validator