| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq2da | Structured version Visualization version GIF version | ||
| Description: Slightly more general equality inference for the maps to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2da.1 | ⊢ Ⅎ𝑥𝜑 |
| mpteq2da.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2da | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | ax-gen 1722 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
| 3 | mpteq2da.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | mpteq2da.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 5 | 4 | ex 450 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 = 𝐶)) |
| 6 | 3, 5 | ralrimi 2957 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 7 | mpteq12f 4731 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 8 | 2, 6, 7 | sylancr 695 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| Copyright terms: Public domain | W3C validator |