| Step | Hyp | Ref
| Expression |
| 1 | | unieq 4444 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → ∪ 𝑎 =
∪ ∅) |
| 2 | | uni0 4465 |
. . . . . . . . 9
⊢ ∪ ∅ = ∅ |
| 3 | 1, 2 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ∪ 𝑎 =
∅) |
| 4 | 3 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑎 = ∅ → (∪ 𝑎
∈ 𝐽 ↔ ∅
∈ 𝐽)) |
| 5 | | mretopd.j |
. . . . . . . . . . . . . 14
⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} |
| 6 | | ssrab2 3687 |
. . . . . . . . . . . . . 14
⊢ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ⊆ 𝒫 𝐵 |
| 7 | 5, 6 | eqsstri 3635 |
. . . . . . . . . . . . 13
⊢ 𝐽 ⊆ 𝒫 𝐵 |
| 8 | | sstr 3611 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝐵) → 𝑎 ⊆ 𝒫 𝐵) |
| 9 | 7, 8 | mpan2 707 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐽 → 𝑎 ⊆ 𝒫 𝐵) |
| 10 | 9 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → 𝑎 ⊆ 𝒫 𝐵) |
| 11 | | sspwuni 4611 |
. . . . . . . . . . 11
⊢ (𝑎 ⊆ 𝒫 𝐵 ↔ ∪ 𝑎
⊆ 𝐵) |
| 12 | 10, 11 | sylib 208 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∪ 𝑎 ⊆ 𝐵) |
| 13 | | vuniex 6954 |
. . . . . . . . . . 11
⊢ ∪ 𝑎
∈ V |
| 14 | 13 | elpw 4164 |
. . . . . . . . . 10
⊢ (∪ 𝑎
∈ 𝒫 𝐵 ↔
∪ 𝑎 ⊆ 𝐵) |
| 15 | 12, 14 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∪ 𝑎 ∈ 𝒫 𝐵) |
| 16 | 15 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∪ 𝑎
∈ 𝒫 𝐵) |
| 17 | | uniiun 4573 |
. . . . . . . . . 10
⊢ ∪ 𝑎 =
∪ 𝑏 ∈ 𝑎 𝑏 |
| 18 | 17 | difeq2i 3725 |
. . . . . . . . 9
⊢ (𝐵 ∖ ∪ 𝑎) =
(𝐵 ∖ ∪ 𝑏 ∈ 𝑎 𝑏) |
| 19 | | iindif2 4589 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ ∅ → ∩ 𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) = (𝐵 ∖ ∪
𝑏 ∈ 𝑎 𝑏)) |
| 20 | 19 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∩ 𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) = (𝐵 ∖ ∪
𝑏 ∈ 𝑎 𝑏)) |
| 21 | | mretopd.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ (Moore‘𝐵)) |
| 22 | 21 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → 𝑀 ∈ (Moore‘𝐵)) |
| 23 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → 𝑎 ≠ ∅) |
| 24 | | difeq2 3722 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑏 → (𝐵 ∖ 𝑧) = (𝐵 ∖ 𝑏)) |
| 25 | 24 | eleq1d 2686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑏 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ 𝑏) ∈ 𝑀)) |
| 26 | 25, 5 | elrab2 3366 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝐽 ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝐵 ∖ 𝑏) ∈ 𝑀)) |
| 27 | 26 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐽 → (𝐵 ∖ 𝑏) ∈ 𝑀) |
| 28 | 27 | rgen 2922 |
. . . . . . . . . . . . 13
⊢
∀𝑏 ∈
𝐽 (𝐵 ∖ 𝑏) ∈ 𝑀 |
| 29 | | ssralv 3666 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ⊆ 𝐽 → (∀𝑏 ∈ 𝐽 (𝐵 ∖ 𝑏) ∈ 𝑀 → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀)) |
| 30 | 29 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → (∀𝑏 ∈ 𝐽 (𝐵 ∖ 𝑏) ∈ 𝑀 → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀)) |
| 31 | 28, 30 | mpi 20 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
| 32 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
| 33 | | mreiincl 16256 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Moore‘𝐵) ∧ 𝑎 ≠ ∅ ∧ ∀𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) → ∩
𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
| 34 | 22, 23, 32, 33 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∩ 𝑏 ∈ 𝑎 (𝐵 ∖ 𝑏) ∈ 𝑀) |
| 35 | 20, 34 | eqeltrrd 2702 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 ∖ ∪
𝑏 ∈ 𝑎 𝑏) ∈ 𝑀) |
| 36 | 18, 35 | syl5eqel 2705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → (𝐵 ∖ ∪ 𝑎) ∈ 𝑀) |
| 37 | | difeq2 3722 |
. . . . . . . . . 10
⊢ (𝑧 = ∪
𝑎 → (𝐵 ∖ 𝑧) = (𝐵 ∖ ∪ 𝑎)) |
| 38 | 37 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑧 = ∪
𝑎 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ ∪ 𝑎) ∈ 𝑀)) |
| 39 | 38, 5 | elrab2 3366 |
. . . . . . . 8
⊢ (∪ 𝑎
∈ 𝐽 ↔ (∪ 𝑎
∈ 𝒫 𝐵 ∧
(𝐵 ∖ ∪ 𝑎)
∈ 𝑀)) |
| 40 | 16, 36, 39 | sylanbrc 698 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ⊆ 𝐽) ∧ 𝑎 ≠ ∅) → ∪ 𝑎
∈ 𝐽) |
| 41 | | 0elpw 4834 |
. . . . . . . . . 10
⊢ ∅
∈ 𝒫 𝐵 |
| 42 | 41 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ∅ ∈ 𝒫
𝐵) |
| 43 | | mre1cl 16254 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (Moore‘𝐵) → 𝐵 ∈ 𝑀) |
| 44 | 21, 43 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝑀) |
| 45 | | difeq2 3722 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → (𝐵 ∖ 𝑧) = (𝐵 ∖ ∅)) |
| 46 | | dif0 3950 |
. . . . . . . . . . . 12
⊢ (𝐵 ∖ ∅) = 𝐵 |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝐵 ∖ 𝑧) = 𝐵) |
| 48 | 47 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑧 = ∅ → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ 𝐵 ∈ 𝑀)) |
| 49 | 48, 5 | elrab2 3366 |
. . . . . . . . 9
⊢ (∅
∈ 𝐽 ↔ (∅
∈ 𝒫 𝐵 ∧
𝐵 ∈ 𝑀)) |
| 50 | 42, 44, 49 | sylanbrc 698 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐽) |
| 51 | 50 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∅ ∈ 𝐽) |
| 52 | 4, 40, 51 | pm2.61ne 2879 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐽) → ∪ 𝑎 ∈ 𝐽) |
| 53 | 52 | ex 450 |
. . . . 5
⊢ (𝜑 → (𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽)) |
| 54 | 53 | alrimiv 1855 |
. . . 4
⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽)) |
| 55 | | inss1 3833 |
. . . . . . . 8
⊢ (𝑎 ∩ 𝑏) ⊆ 𝑎 |
| 56 | | difeq2 3722 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑎 → (𝐵 ∖ 𝑧) = (𝐵 ∖ 𝑎)) |
| 57 | 56 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑎 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ 𝑎) ∈ 𝑀)) |
| 58 | 57, 5 | elrab2 3366 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ 𝒫 𝐵 ∧ (𝐵 ∖ 𝑎) ∈ 𝑀)) |
| 59 | 58 | simplbi 476 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ 𝒫 𝐵) |
| 60 | 59 | elpwid 4170 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐽 → 𝑎 ⊆ 𝐵) |
| 61 | 60 | ad2antrl 764 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → 𝑎 ⊆ 𝐵) |
| 62 | 55, 61 | syl5ss 3614 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝑎 ∩ 𝑏) ⊆ 𝐵) |
| 63 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 64 | 63 | inex1 4799 |
. . . . . . . 8
⊢ (𝑎 ∩ 𝑏) ∈ V |
| 65 | 64 | elpw 4164 |
. . . . . . 7
⊢ ((𝑎 ∩ 𝑏) ∈ 𝒫 𝐵 ↔ (𝑎 ∩ 𝑏) ⊆ 𝐵) |
| 66 | 62, 65 | sylibr 224 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝑎 ∩ 𝑏) ∈ 𝒫 𝐵) |
| 67 | | difindi 3881 |
. . . . . . 7
⊢ (𝐵 ∖ (𝑎 ∩ 𝑏)) = ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) |
| 68 | 58 | simprbi 480 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐽 → (𝐵 ∖ 𝑎) ∈ 𝑀) |
| 69 | 68 | ad2antrl 764 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝐵 ∖ 𝑎) ∈ 𝑀) |
| 70 | 27 | ad2antll 765 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝐵 ∖ 𝑏) ∈ 𝑀) |
| 71 | | simpl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → 𝜑) |
| 72 | | uneq1 3760 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐵 ∖ 𝑎) → (𝑥 ∪ 𝑦) = ((𝐵 ∖ 𝑎) ∪ 𝑦)) |
| 73 | 72 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐵 ∖ 𝑎) → ((𝑥 ∪ 𝑦) ∈ 𝑀 ↔ ((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀)) |
| 74 | 73 | imbi2d 330 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐵 ∖ 𝑎) → ((𝜑 → (𝑥 ∪ 𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀))) |
| 75 | | uneq2 3761 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐵 ∖ 𝑏) → ((𝐵 ∖ 𝑎) ∪ 𝑦) = ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏))) |
| 76 | 75 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐵 ∖ 𝑏) → (((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀 ↔ ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀)) |
| 77 | 76 | imbi2d 330 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐵 ∖ 𝑏) → ((𝜑 → ((𝐵 ∖ 𝑎) ∪ 𝑦) ∈ 𝑀) ↔ (𝜑 → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀))) |
| 78 | | mretopd.u |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀) → (𝑥 ∪ 𝑦) ∈ 𝑀) |
| 79 | 78 | 3expb 1266 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥 ∪ 𝑦) ∈ 𝑀) |
| 80 | 79 | expcom 451 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀) → (𝜑 → (𝑥 ∪ 𝑦) ∈ 𝑀)) |
| 81 | 74, 77, 80 | vtocl2ga 3274 |
. . . . . . . . 9
⊢ (((𝐵 ∖ 𝑎) ∈ 𝑀 ∧ (𝐵 ∖ 𝑏) ∈ 𝑀) → (𝜑 → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀)) |
| 82 | 81 | imp 445 |
. . . . . . . 8
⊢ ((((𝐵 ∖ 𝑎) ∈ 𝑀 ∧ (𝐵 ∖ 𝑏) ∈ 𝑀) ∧ 𝜑) → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀) |
| 83 | 69, 70, 71, 82 | syl21anc 1325 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → ((𝐵 ∖ 𝑎) ∪ (𝐵 ∖ 𝑏)) ∈ 𝑀) |
| 84 | 67, 83 | syl5eqel 2705 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝐵 ∖ (𝑎 ∩ 𝑏)) ∈ 𝑀) |
| 85 | | difeq2 3722 |
. . . . . . . 8
⊢ (𝑧 = (𝑎 ∩ 𝑏) → (𝐵 ∖ 𝑧) = (𝐵 ∖ (𝑎 ∩ 𝑏))) |
| 86 | 85 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑧 = (𝑎 ∩ 𝑏) → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝑎 ∩ 𝑏)) ∈ 𝑀)) |
| 87 | 86, 5 | elrab2 3366 |
. . . . . 6
⊢ ((𝑎 ∩ 𝑏) ∈ 𝐽 ↔ ((𝑎 ∩ 𝑏) ∈ 𝒫 𝐵 ∧ (𝐵 ∖ (𝑎 ∩ 𝑏)) ∈ 𝑀)) |
| 88 | 66, 84, 87 | sylanbrc 698 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐽 ∧ 𝑏 ∈ 𝐽)) → (𝑎 ∩ 𝑏) ∈ 𝐽) |
| 89 | 88 | ralrimivva 2971 |
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ 𝐽 ∀𝑏 ∈ 𝐽 (𝑎 ∩ 𝑏) ∈ 𝐽) |
| 90 | | pwexg 4850 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑀 → 𝒫 𝐵 ∈ V) |
| 91 | 44, 90 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 92 | 5, 91 | rabexd 4814 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ V) |
| 93 | | istopg 20700 |
. . . . 5
⊢ (𝐽 ∈ V → (𝐽 ∈ Top ↔
(∀𝑎(𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽) ∧ ∀𝑎 ∈ 𝐽 ∀𝑏 ∈ 𝐽 (𝑎 ∩ 𝑏) ∈ 𝐽))) |
| 94 | 92, 93 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐽 ∈ Top ↔ (∀𝑎(𝑎 ⊆ 𝐽 → ∪ 𝑎 ∈ 𝐽) ∧ ∀𝑎 ∈ 𝐽 ∀𝑏 ∈ 𝐽 (𝑎 ∩ 𝑏) ∈ 𝐽))) |
| 95 | 54, 89, 94 | mpbir2and 957 |
. . 3
⊢ (𝜑 → 𝐽 ∈ Top) |
| 96 | 7 | unissi 4461 |
. . . . . 6
⊢ ∪ 𝐽
⊆ ∪ 𝒫 𝐵 |
| 97 | | unipw 4918 |
. . . . . 6
⊢ ∪ 𝒫 𝐵 = 𝐵 |
| 98 | 96, 97 | sseqtri 3637 |
. . . . 5
⊢ ∪ 𝐽
⊆ 𝐵 |
| 99 | | pwidg 4173 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑀 → 𝐵 ∈ 𝒫 𝐵) |
| 100 | 44, 99 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐵) |
| 101 | | difid 3948 |
. . . . . . 7
⊢ (𝐵 ∖ 𝐵) = ∅ |
| 102 | | mretopd.z |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ 𝑀) |
| 103 | 101, 102 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∖ 𝐵) ∈ 𝑀) |
| 104 | | difeq2 3722 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝐵 ∖ 𝑧) = (𝐵 ∖ 𝐵)) |
| 105 | 104 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ 𝐵) ∈ 𝑀)) |
| 106 | 105, 5 | elrab2 3366 |
. . . . . 6
⊢ (𝐵 ∈ 𝐽 ↔ (𝐵 ∈ 𝒫 𝐵 ∧ (𝐵 ∖ 𝐵) ∈ 𝑀)) |
| 107 | 100, 103,
106 | sylanbrc 698 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝐽) |
| 108 | | unissel 4468 |
. . . . 5
⊢ ((∪ 𝐽
⊆ 𝐵 ∧ 𝐵 ∈ 𝐽) → ∪ 𝐽 = 𝐵) |
| 109 | 98, 107, 108 | sylancr 695 |
. . . 4
⊢ (𝜑 → ∪ 𝐽 =
𝐵) |
| 110 | 109 | eqcomd 2628 |
. . 3
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
| 111 | | istopon 20717 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) |
| 112 | 95, 110, 111 | sylanbrc 698 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐵)) |
| 113 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 114 | 113 | cldval 20827 |
. . . 4
⊢ (𝐽 ∈ Top →
(Clsd‘𝐽) = {𝑥 ∈ 𝒫 ∪ 𝐽
∣ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽}) |
| 115 | 95, 114 | syl 17 |
. . 3
⊢ (𝜑 → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 ∪ 𝐽
∣ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽}) |
| 116 | 109 | pweqd 4163 |
. . . 4
⊢ (𝜑 → 𝒫 ∪ 𝐽 =
𝒫 𝐵) |
| 117 | 109 | difeq1d 3727 |
. . . . 5
⊢ (𝜑 → (∪ 𝐽
∖ 𝑥) = (𝐵 ∖ 𝑥)) |
| 118 | 117 | eleq1d 2686 |
. . . 4
⊢ (𝜑 → ((∪ 𝐽
∖ 𝑥) ∈ 𝐽 ↔ (𝐵 ∖ 𝑥) ∈ 𝐽)) |
| 119 | 116, 118 | rabeqbidv 3195 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝒫 ∪ 𝐽
∣ (∪ 𝐽 ∖ 𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑥) ∈ 𝐽}) |
| 120 | 5 | eleq2i 2693 |
. . . . . . 7
⊢ ((𝐵 ∖ 𝑥) ∈ 𝐽 ↔ (𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀}) |
| 121 | | difss 3737 |
. . . . . . . . . 10
⊢ (𝐵 ∖ 𝑥) ⊆ 𝐵 |
| 122 | | elpw2g 4827 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑀 → ((𝐵 ∖ 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∖ 𝑥) ⊆ 𝐵)) |
| 123 | 44, 122 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐵 ∖ 𝑥) ∈ 𝒫 𝐵 ↔ (𝐵 ∖ 𝑥) ⊆ 𝐵)) |
| 124 | 121, 123 | mpbiri 248 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 ∖ 𝑥) ∈ 𝒫 𝐵) |
| 125 | | difeq2 3722 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐵 ∖ 𝑥) → (𝐵 ∖ 𝑧) = (𝐵 ∖ (𝐵 ∖ 𝑥))) |
| 126 | 125 | eleq1d 2686 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐵 ∖ 𝑥) → ((𝐵 ∖ 𝑧) ∈ 𝑀 ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
| 127 | 126 | elrab3 3364 |
. . . . . . . . 9
⊢ ((𝐵 ∖ 𝑥) ∈ 𝒫 𝐵 → ((𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
| 128 | 124, 127 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
| 129 | 128 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑥) ∈ {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑧) ∈ 𝑀} ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
| 130 | 120, 129 | syl5bb 272 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑥) ∈ 𝐽 ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀)) |
| 131 | | elpwi 4168 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵) |
| 132 | | dfss4 3858 |
. . . . . . . . 9
⊢ (𝑥 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑥)) = 𝑥) |
| 133 | 131, 132 | sylib 208 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑥)) = 𝑥) |
| 134 | 133 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → (𝐵 ∖ (𝐵 ∖ 𝑥)) = 𝑥) |
| 135 | 134 | eleq1d 2686 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ (𝐵 ∖ 𝑥)) ∈ 𝑀 ↔ 𝑥 ∈ 𝑀)) |
| 136 | 130, 135 | bitrd 268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 𝐵) → ((𝐵 ∖ 𝑥) ∈ 𝐽 ↔ 𝑥 ∈ 𝑀)) |
| 137 | 136 | rabbidva 3188 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑥) ∈ 𝐽} = {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀}) |
| 138 | | incom 3805 |
. . . . . 6
⊢ (𝑀 ∩ 𝒫 𝐵) = (𝒫 𝐵 ∩ 𝑀) |
| 139 | | dfin5 3582 |
. . . . . 6
⊢
(𝒫 𝐵 ∩
𝑀) = {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀} |
| 140 | 138, 139 | eqtri 2644 |
. . . . 5
⊢ (𝑀 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀} |
| 141 | | mresspw 16252 |
. . . . . . 7
⊢ (𝑀 ∈ (Moore‘𝐵) → 𝑀 ⊆ 𝒫 𝐵) |
| 142 | 21, 141 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ⊆ 𝒫 𝐵) |
| 143 | | df-ss 3588 |
. . . . . 6
⊢ (𝑀 ⊆ 𝒫 𝐵 ↔ (𝑀 ∩ 𝒫 𝐵) = 𝑀) |
| 144 | 142, 143 | sylib 208 |
. . . . 5
⊢ (𝜑 → (𝑀 ∩ 𝒫 𝐵) = 𝑀) |
| 145 | 140, 144 | syl5eqr 2670 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ 𝑥 ∈ 𝑀} = 𝑀) |
| 146 | 137, 145 | eqtrd 2656 |
. . 3
⊢ (𝜑 → {𝑥 ∈ 𝒫 𝐵 ∣ (𝐵 ∖ 𝑥) ∈ 𝐽} = 𝑀) |
| 147 | 115, 119,
146 | 3eqtrrd 2661 |
. 2
⊢ (𝜑 → 𝑀 = (Clsd‘𝐽)) |
| 148 | 112, 147 | jca 554 |
1
⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽))) |