Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubfval Structured version   Visualization version   GIF version

Theorem mrsubfval 31405
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubfval ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
Distinct variable groups:   𝑣,𝑒,𝐴   𝐶,𝑒,𝑣   𝑒,𝐹,𝑣   𝑅,𝑒,𝑣   𝑒,𝐺   𝑇,𝑒,𝑣   𝑒,𝑉,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒)   𝐺(𝑣)

Proof of Theorem mrsubfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . . . 6 𝐶 = (mCN‘𝑇)
2 mrsubffval.v . . . . . 6 𝑉 = (mVR‘𝑇)
3 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
4 mrsubffval.s . . . . . 6 𝑆 = (mRSubst‘𝑇)
5 mrsubffval.g . . . . . 6 𝐺 = (freeMnd‘(𝐶𝑉))
61, 2, 3, 4, 5mrsubffval 31404 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
76adantr 481 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
8 dmeq 5324 . . . . . . . . . . 11 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
9 fdm 6051 . . . . . . . . . . . 12 (𝐹:𝐴𝑅 → dom 𝐹 = 𝐴)
109ad2antrl 764 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → dom 𝐹 = 𝐴)
118, 10sylan9eqr 2678 . . . . . . . . . 10 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
1211eleq2d 2687 . . . . . . . . 9 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑣 ∈ dom 𝑓𝑣𝐴))
13 simpr 477 . . . . . . . . . 10 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
1413fveq1d 6193 . . . . . . . . 9 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑓𝑣) = (𝐹𝑣))
1512, 14ifbieq1d 4109 . . . . . . . 8 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
1615mpteq2dv 4745 . . . . . . 7 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)))
1716coeq1d 5283 . . . . . 6 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1817oveq2d 6666 . . . . 5 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
1918mpteq2dv 4745 . . . 4 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
20 fvex 6201 . . . . . . 7 (mREx‘𝑇) ∈ V
213, 20eqeltri 2697 . . . . . 6 𝑅 ∈ V
2221a1i 11 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑅 ∈ V)
23 fvex 6201 . . . . . . 7 (mVR‘𝑇) ∈ V
242, 23eqeltri 2697 . . . . . 6 𝑉 ∈ V
2524a1i 11 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑉 ∈ V)
26 simprl 794 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹:𝐴𝑅)
27 simprr 796 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐴𝑉)
28 elpm2r 7875 . . . . 5 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
2922, 25, 26, 27, 28syl22anc 1327 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
3021mptex 6486 . . . . 5 (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ V
3130a1i 11 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ V)
327, 19, 29, 31fvmptd 6288 . . 3 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3332ex 450 . 2 (𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
34 0fv 6227 . . . 4 (∅‘𝐹) = ∅
35 fvprc 6185 . . . . . 6 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
364, 35syl5eq 2668 . . . . 5 𝑇 ∈ V → 𝑆 = ∅)
3736fveq1d 6193 . . . 4 𝑇 ∈ V → (𝑆𝐹) = (∅‘𝐹))
38 fvprc 6185 . . . . . . 7 𝑇 ∈ V → (mREx‘𝑇) = ∅)
393, 38syl5eq 2668 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
4039mpteq1d 4738 . . . . 5 𝑇 ∈ V → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒 ∈ ∅ ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
41 mpt0 6021 . . . . 5 (𝑒 ∈ ∅ ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = ∅
4240, 41syl6eq 2672 . . . 4 𝑇 ∈ V → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = ∅)
4334, 37, 423eqtr4a 2682 . . 3 𝑇 ∈ V → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4443a1d 25 . 2 𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4533, 44pm2.61i 176 1 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  c0 3915  ifcif 4086  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  ⟨“cs1 13294   Σg cgsu 16101  freeMndcfrmd 17384  mCNcmcn 31357  mVRcmvar 31358  mRExcmrex 31363  mRSubstcmrsub 31367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-mrsub 31387
This theorem is referenced by:  mrsubval  31406  mrsubrn  31410  elmrsubrn  31417
  Copyright terms: Public domain W3C validator