![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgval | Structured version Visualization version GIF version |
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgval.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgval.p | ⊢ + = (+g‘𝐺) |
mulgval.o | ⊢ 0 = (0g‘𝐺) |
mulgval.i | ⊢ 𝐼 = (invg‘𝐺) |
mulgval.t | ⊢ · = (.g‘𝐺) |
mulgval.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
Ref | Expression |
---|---|
mulgval | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑛 = 𝑁) | |
2 | 1 | eqeq1d 2624 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 4665 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁)) |
4 | simpr 477 | . . . . . . . . 9 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
5 | 4 | sneqd 4189 | . . . . . . . 8 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
6 | 5 | xpeq2d 5139 | . . . . . . 7 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋})) |
7 | 6 | seqeq3d 12809 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋}))) |
8 | mulgval.s | . . . . . 6 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
9 | 7, 8 | syl6eqr 2674 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆) |
10 | 9, 1 | fveq12d 6197 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆‘𝑁)) |
11 | 1 | negeqd 10275 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → -𝑛 = -𝑁) |
12 | 9, 11 | fveq12d 6197 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁)) |
13 | 12 | fveq2d 6195 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁))) |
14 | 3, 10, 13 | ifbieq12d 4113 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) |
15 | 2, 14 | ifbieq2d 4111 | . 2 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
16 | mulgval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | mulgval.p | . . 3 ⊢ + = (+g‘𝐺) | |
18 | mulgval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
19 | mulgval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
20 | mulgval.t | . . 3 ⊢ · = (.g‘𝐺) | |
21 | 16, 17, 18, 19, 20 | mulgfval 17542 | . 2 ⊢ · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
22 | fvex 6201 | . . . 4 ⊢ (0g‘𝐺) ∈ V | |
23 | 18, 22 | eqeltri 2697 | . . 3 ⊢ 0 ∈ V |
24 | fvex 6201 | . . . 4 ⊢ (𝑆‘𝑁) ∈ V | |
25 | fvex 6201 | . . . 4 ⊢ (𝐼‘(𝑆‘-𝑁)) ∈ V | |
26 | 24, 25 | ifex 4156 | . . 3 ⊢ if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V |
27 | 23, 26 | ifex 4156 | . 2 ⊢ if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V |
28 | 15, 21, 27 | ovmpt2a 6791 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 {csn 4177 class class class wbr 4653 × cxp 5112 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 < clt 10074 -cneg 10267 ℕcn 11020 ℤcz 11377 seqcseq 12801 Basecbs 15857 +gcplusg 15941 0gc0g 16100 invgcminusg 17423 .gcmg 17540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-neg 10269 df-z 11378 df-seq 12802 df-mulg 17541 |
This theorem is referenced by: mulg0 17546 mulgnn 17547 mulgnegnn 17551 subgmulg 17608 |
Copyright terms: Public domain | W3C validator |