MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgval Structured version   Visualization version   Unicode version

Theorem mulgval 17543
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( invg `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
mulgval.s  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
Assertion
Ref Expression
mulgval  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )

Proof of Theorem mulgval
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  n  =  N )
21eqeq1d 2624 . . 3  |-  ( ( n  =  N  /\  x  =  X )  ->  ( n  =  0  <-> 
N  =  0 ) )
31breq2d 4665 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  ( 0  <  n  <->  0  <  N ) )
4 simpr 477 . . . . . . . . 9  |-  ( ( n  =  N  /\  x  =  X )  ->  x  =  X )
54sneqd 4189 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  { x }  =  { X } )
65xpeq2d 5139 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { X } ) )
76seqeq3d 12809 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  seq 1
(  .+  ,  ( NN  X.  { X }
) ) )
8 mulgval.s . . . . . 6  |-  S  =  seq 1 (  .+  ,  ( NN  X.  { X } ) )
97, 8syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  seq 1 (  .+  ,  ( NN  X.  { x } ) )  =  S )
109, 1fveq12d 6197 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
)  =  ( S `
 N ) )
111negeqd 10275 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  -> 
-u n  =  -u N )
129, 11fveq12d 6197 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq 1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  -u n
)  =  ( S `
 -u N ) )
1312fveq2d 6195 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )  =  ( I `  ( S `  -u N
) ) )
143, 10, 13ifbieq12d 4113 . . 3  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( 0  < 
n ,  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq 1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) )  =  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )
152, 14ifbieq2d 4111 . 2  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
16 mulgval.b . . 3  |-  B  =  ( Base `  G
)
17 mulgval.p . . 3  |-  .+  =  ( +g  `  G )
18 mulgval.o . . 3  |-  .0.  =  ( 0g `  G )
19 mulgval.i . . 3  |-  I  =  ( invg `  G )
20 mulgval.t . . 3  |-  .x.  =  (.g
`  G )
2116, 17, 18, 19, 20mulgfval 17542 . 2  |-  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq 1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
22 fvex 6201 . . . 4  |-  ( 0g
`  G )  e. 
_V
2318, 22eqeltri 2697 . . 3  |-  .0.  e.  _V
24 fvex 6201 . . . 4  |-  ( S `
 N )  e. 
_V
25 fvex 6201 . . . 4  |-  ( I `
 ( S `  -u N ) )  e. 
_V
2624, 25ifex 4156 . . 3  |-  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) )  e.  _V
2723, 26ifex 4156 . 2  |-  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )  e.  _V
2815, 21, 27ovmpt2a 6791 1  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   {csn 4177   class class class wbr 4653    X. cxp 5112   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    < clt 10074   -ucneg 10267   NNcn 11020   ZZcz 11377    seqcseq 12801   Basecbs 15857   +g cplusg 15941   0gc0g 16100   invgcminusg 17423  .gcmg 17540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-neg 10269  df-z 11378  df-seq 12802  df-mulg 17541
This theorem is referenced by:  mulg0  17546  mulgnn  17547  mulgnegnn  17551  subgmulg  17608
  Copyright terms: Public domain W3C validator