MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmul0g Structured version   Visualization version   GIF version

Theorem mavmul0g 20359
Description: The result of the 0-dimensional multiplication of a matrix with a vector is always the empty set. (Contributed by AV, 1-Mar-2019.)
Hypothesis
Ref Expression
mavmul0.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
mavmul0g ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)

Proof of Theorem mavmul0g
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6659 . . 3 ((𝑋 = ∅ ∧ 𝑌 = ∅) → (𝑋 · 𝑌) = (∅ · ∅))
2 mavmul0.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
32mavmul0 20358 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → (∅ · ∅) = ∅)
41, 3sylan9eq 2676 . 2 (((𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
5 eqid 2622 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2622 . . . . . 6 (.r𝑅) = (.r𝑅)
7 simpr 477 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑅𝑉)
8 0fin 8188 . . . . . . . 8 ∅ ∈ Fin
9 eleq1 2689 . . . . . . . 8 (𝑁 = ∅ → (𝑁 ∈ Fin ↔ ∅ ∈ Fin))
108, 9mpbiri 248 . . . . . . 7 (𝑁 = ∅ → 𝑁 ∈ Fin)
1110adantr 481 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
122, 5, 6, 7, 11, 11mvmulfval 20348 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → · = (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
1312dmeqd 5326 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = dom (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))))
14 0ex 4790 . . . . . . . . . 10 ∅ ∈ V
15 eleq1 2689 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 ∈ V ↔ ∅ ∈ V))
1614, 15mpbiri 248 . . . . . . . . 9 (𝑁 = ∅ → 𝑁 ∈ V)
17 mptexg 6484 . . . . . . . . 9 (𝑁 ∈ V → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1816, 17syl 17 . . . . . . . 8 (𝑁 = ∅ → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
1918adantr 481 . . . . . . 7 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2019adantr 481 . . . . . 6 (((𝑁 = ∅ ∧ 𝑅𝑉) ∧ (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁))) → (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
2120ralrimivva 2971 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ∀𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V)
22 eqid 2622 . . . . . 6 (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))))
2322dmmpt2ga 7242 . . . . 5 (∀𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))∀𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁)(𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙))))) ∈ V → dom (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) × ((Base‘𝑅) ↑𝑚 𝑁)))
2421, 23syl 17 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom (𝑖 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)), 𝑗 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑘𝑖𝑙)(.r𝑅)(𝑗𝑙)))))) = (((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) × ((Base‘𝑅) ↑𝑚 𝑁)))
25 id 22 . . . . . . . . . . 11 (𝑁 = ∅ → 𝑁 = ∅)
2625, 25xpeq12d 5140 . . . . . . . . . 10 (𝑁 = ∅ → (𝑁 × 𝑁) = (∅ × ∅))
27 0xp 5199 . . . . . . . . . 10 (∅ × ∅) = ∅
2826, 27syl6eq 2672 . . . . . . . . 9 (𝑁 = ∅ → (𝑁 × 𝑁) = ∅)
2928oveq2d 6666 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = ((Base‘𝑅) ↑𝑚 ∅))
30 fvex 6201 . . . . . . . . 9 (Base‘𝑅) ∈ V
31 map0e 7895 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
3230, 31mp1i 13 . . . . . . . 8 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
3329, 32eqtrd 2656 . . . . . . 7 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 1𝑜)
3433adantr 481 . . . . . 6 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = 1𝑜)
35 df1o2 7572 . . . . . 6 1𝑜 = {∅}
3634, 35syl6eq 2672 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = {∅})
37 oveq2 6658 . . . . . 6 (𝑁 = ∅ → ((Base‘𝑅) ↑𝑚 𝑁) = ((Base‘𝑅) ↑𝑚 ∅))
3830, 31mp1i 13 . . . . . . 7 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 ∅) = 1𝑜)
3938, 35syl6eq 2672 . . . . . 6 (𝑅𝑉 → ((Base‘𝑅) ↑𝑚 ∅) = {∅})
4037, 39sylan9eq 2676 . . . . 5 ((𝑁 = ∅ ∧ 𝑅𝑉) → ((Base‘𝑅) ↑𝑚 𝑁) = {∅})
4136, 40xpeq12d 5140 . . . 4 ((𝑁 = ∅ ∧ 𝑅𝑉) → (((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) × ((Base‘𝑅) ↑𝑚 𝑁)) = ({∅} × {∅}))
4213, 24, 413eqtrd 2660 . . 3 ((𝑁 = ∅ ∧ 𝑅𝑉) → dom · = ({∅} × {∅}))
43 elsni 4194 . . . . 5 (𝑋 ∈ {∅} → 𝑋 = ∅)
44 elsni 4194 . . . . 5 (𝑌 ∈ {∅} → 𝑌 = ∅)
4543, 44anim12i 590 . . . 4 ((𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}) → (𝑋 = ∅ ∧ 𝑌 = ∅))
4645con3i 150 . . 3 (¬ (𝑋 = ∅ ∧ 𝑌 = ∅) → ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅}))
47 ndmovg 6817 . . 3 ((dom · = ({∅} × {∅}) ∧ ¬ (𝑋 ∈ {∅} ∧ 𝑌 ∈ {∅})) → (𝑋 · 𝑌) = ∅)
4842, 46, 47syl2anr 495 . 2 ((¬ (𝑋 = ∅ ∧ 𝑌 = ∅) ∧ (𝑁 = ∅ ∧ 𝑅𝑉)) → (𝑋 · 𝑌) = ∅)
494, 48pm2.61ian 831 1 ((𝑁 = ∅ ∧ 𝑅𝑉) → (𝑋 · 𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  c0 3915  {csn 4177  cop 4183  cmpt 4729   × cxp 5112  dom cdm 5114  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  .rcmulr 15942   Σg cgsu 16101   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214  df-mvmul 20347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator