MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmulfval Structured version   Visualization version   Unicode version

Theorem mvmulfval 20348
Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mvmulfval.x  |-  .X.  =  ( R maVecMul  <. M ,  N >. )
mvmulfval.b  |-  B  =  ( Base `  R
)
mvmulfval.t  |-  .x.  =  ( .r `  R )
mvmulfval.r  |-  ( ph  ->  R  e.  V )
mvmulfval.m  |-  ( ph  ->  M  e.  Fin )
mvmulfval.n  |-  ( ph  ->  N  e.  Fin )
Assertion
Ref Expression
mvmulfval  |-  ( ph  ->  .X.  =  ( x  e.  ( B  ^m  ( M  X.  N
) ) ,  y  e.  ( B  ^m  N )  |->  ( i  e.  M  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) ) )
Distinct variable groups:    i, j, x, y, ph    i, M, j, x, y    i, N, j, x, y    R, i, j, x, y    x, B, y    x,  .x. , y,
i
Allowed substitution hints:    B( i, j)    .x. ( j)    .X. ( x, y, i, j)    V( x, y, i, j)

Proof of Theorem mvmulfval
Dummy variables  m  n  o  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvmulfval.x . 2  |-  .X.  =  ( R maVecMul  <. M ,  N >. )
2 df-mvmul 20347 . . . 4  |- maVecMul  =  ( r  e.  _V , 
o  e.  _V  |->  [_ ( 1st `  o )  /  m ]_ [_ ( 2nd `  o )  /  n ]_ ( x  e.  ( ( Base `  r
)  ^m  ( m  X.  n ) ) ,  y  e.  ( (
Base `  r )  ^m  n )  |->  ( i  e.  m  |->  ( r 
gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) ) ) )
32a1i 11 . . 3  |-  ( ph  -> maVecMul 
=  ( r  e. 
_V ,  o  e. 
_V  |->  [_ ( 1st `  o
)  /  m ]_ [_ ( 2nd `  o
)  /  n ]_ ( x  e.  (
( Base `  r )  ^m  ( m  X.  n
) ) ,  y  e.  ( ( Base `  r )  ^m  n
)  |->  ( i  e.  m  |->  ( r  gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r `  r
) ( y `  j ) ) ) ) ) ) ) )
4 fvex 6201 . . . . 5  |-  ( 1st `  o )  e.  _V
5 fvex 6201 . . . . 5  |-  ( 2nd `  o )  e.  _V
6 xpeq12 5134 . . . . . . 7  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
m  X.  n )  =  ( ( 1st `  o )  X.  ( 2nd `  o ) ) )
76oveq2d 6666 . . . . . 6  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
( Base `  r )  ^m  ( m  X.  n
) )  =  ( ( Base `  r
)  ^m  ( ( 1st `  o )  X.  ( 2nd `  o
) ) ) )
8 oveq2 6658 . . . . . . 7  |-  ( n  =  ( 2nd `  o
)  ->  ( ( Base `  r )  ^m  n )  =  ( ( Base `  r
)  ^m  ( 2nd `  o ) ) )
98adantl 482 . . . . . 6  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
( Base `  r )  ^m  n )  =  ( ( Base `  r
)  ^m  ( 2nd `  o ) ) )
10 simpl 473 . . . . . . 7  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  m  =  ( 1st `  o
) )
11 simpr 477 . . . . . . . . 9  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  n  =  ( 2nd `  o
) )
1211mpteq1d 4738 . . . . . . . 8  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
j  e.  n  |->  ( ( i x j ) ( .r `  r ) ( y `
 j ) ) )  =  ( j  e.  ( 2nd `  o
)  |->  ( ( i x j ) ( .r `  r ) ( y `  j
) ) ) )
1312oveq2d 6666 . . . . . . 7  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
r  gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) )  =  ( r  gsumg  ( j  e.  ( 2nd `  o ) 
|->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) )
1410, 13mpteq12dv 4733 . . . . . 6  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
i  e.  m  |->  ( r  gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) )  =  ( i  e.  ( 1st `  o
)  |->  ( r  gsumg  ( j  e.  ( 2nd `  o
)  |->  ( ( i x j ) ( .r `  r ) ( y `  j
) ) ) ) ) )
157, 9, 14mpt2eq123dv 6717 . . . . 5  |-  ( ( m  =  ( 1st `  o )  /\  n  =  ( 2nd `  o
) )  ->  (
x  e.  ( (
Base `  r )  ^m  ( m  X.  n
) ) ,  y  e.  ( ( Base `  r )  ^m  n
)  |->  ( i  e.  m  |->  ( r  gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r `  r
) ( y `  j ) ) ) ) ) )  =  ( x  e.  ( ( Base `  r
)  ^m  ( ( 1st `  o )  X.  ( 2nd `  o
) ) ) ,  y  e.  ( (
Base `  r )  ^m  ( 2nd `  o
) )  |->  ( i  e.  ( 1st `  o
)  |->  ( r  gsumg  ( j  e.  ( 2nd `  o
)  |->  ( ( i x j ) ( .r `  r ) ( y `  j
) ) ) ) ) ) )
164, 5, 15csbie2 3563 . . . 4  |-  [_ ( 1st `  o )  /  m ]_ [_ ( 2nd `  o )  /  n ]_ ( x  e.  ( ( Base `  r
)  ^m  ( m  X.  n ) ) ,  y  e.  ( (
Base `  r )  ^m  n )  |->  ( i  e.  m  |->  ( r 
gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) ) )  =  ( x  e.  ( ( Base `  r )  ^m  (
( 1st `  o
)  X.  ( 2nd `  o ) ) ) ,  y  e.  ( ( Base `  r
)  ^m  ( 2nd `  o ) )  |->  ( i  e.  ( 1st `  o )  |->  ( r 
gsumg  ( j  e.  ( 2nd `  o ) 
|->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) ) )
17 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  r  =  R )
1817fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( Base `  r )  =  ( Base `  R
) )
19 mvmulfval.b . . . . . . 7  |-  B  =  ( Base `  R
)
2018, 19syl6eqr 2674 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( Base `  r )  =  B )
21 fveq2 6191 . . . . . . . . 9  |-  ( o  =  <. M ,  N >.  ->  ( 1st `  o
)  =  ( 1st `  <. M ,  N >. ) )
2221ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( 1st `  o )  =  ( 1st `  <. M ,  N >. )
)
23 mvmulfval.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  Fin )
24 mvmulfval.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  Fin )
25 op1stg 7180 . . . . . . . . . 10  |-  ( ( M  e.  Fin  /\  N  e.  Fin )  ->  ( 1st `  <. M ,  N >. )  =  M )
2623, 24, 25syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  <. M ,  N >. )  =  M )
2726adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( 1st `  <. M ,  N >. )  =  M )
2822, 27eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( 1st `  o )  =  M )
29 fveq2 6191 . . . . . . . . 9  |-  ( o  =  <. M ,  N >.  ->  ( 2nd `  o
)  =  ( 2nd `  <. M ,  N >. ) )
3029ad2antll 765 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( 2nd `  o )  =  ( 2nd `  <. M ,  N >. )
)
31 op2ndg 7181 . . . . . . . . . 10  |-  ( ( M  e.  Fin  /\  N  e.  Fin )  ->  ( 2nd `  <. M ,  N >. )  =  N )
3223, 24, 31syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 2nd `  <. M ,  N >. )  =  N )
3332adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( 2nd `  <. M ,  N >. )  =  N )
3430, 33eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( 2nd `  o )  =  N )
3528, 34xpeq12d 5140 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
( 1st `  o
)  X.  ( 2nd `  o ) )  =  ( M  X.  N
) )
3620, 35oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
( Base `  r )  ^m  ( ( 1st `  o
)  X.  ( 2nd `  o ) ) )  =  ( B  ^m  ( M  X.  N
) ) )
3720, 34oveq12d 6668 . . . . 5  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
( Base `  r )  ^m  ( 2nd `  o
) )  =  ( B  ^m  N ) )
38 fveq2 6191 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
3938adantr 481 . . . . . . . . . . 11  |-  ( ( r  =  R  /\  o  =  <. M ,  N >. )  ->  ( .r `  r )  =  ( .r `  R
) )
4039adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( .r `  r )  =  ( .r `  R
) )
41 mvmulfval.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
4240, 41syl6eqr 2674 . . . . . . . . 9  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  ( .r `  r )  = 
.x.  )
4342oveqd 6667 . . . . . . . 8  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
( i x j ) ( .r `  r ) ( y `
 j ) )  =  ( ( i x j )  .x.  ( y `  j
) ) )
4434, 43mpteq12dv 4733 . . . . . . 7  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
j  e.  ( 2nd `  o )  |->  ( ( i x j ) ( .r `  r
) ( y `  j ) ) )  =  ( j  e.  N  |->  ( ( i x j )  .x.  ( y `  j
) ) ) )
4517, 44oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
r  gsumg  ( j  e.  ( 2nd `  o ) 
|->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) )  =  ( R  gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) )
4628, 45mpteq12dv 4733 . . . . 5  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
i  e.  ( 1st `  o )  |->  ( r 
gsumg  ( j  e.  ( 2nd `  o ) 
|->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) )  =  ( i  e.  M  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i x j ) 
.x.  ( y `  j ) ) ) ) ) )
4736, 37, 46mpt2eq123dv 6717 . . . 4  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  (
x  e.  ( (
Base `  r )  ^m  ( ( 1st `  o
)  X.  ( 2nd `  o ) ) ) ,  y  e.  ( ( Base `  r
)  ^m  ( 2nd `  o ) )  |->  ( i  e.  ( 1st `  o )  |->  ( r 
gsumg  ( j  e.  ( 2nd `  o ) 
|->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) ) )  =  ( x  e.  ( B  ^m  ( M  X.  N
) ) ,  y  e.  ( B  ^m  N )  |->  ( i  e.  M  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) ) )
4816, 47syl5eq 2668 . . 3  |-  ( (
ph  /\  ( r  =  R  /\  o  =  <. M ,  N >. ) )  ->  [_ ( 1st `  o )  /  m ]_ [_ ( 2nd `  o )  /  n ]_ ( x  e.  ( ( Base `  r
)  ^m  ( m  X.  n ) ) ,  y  e.  ( (
Base `  r )  ^m  n )  |->  ( i  e.  m  |->  ( r 
gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r
`  r ) ( y `  j ) ) ) ) ) )  =  ( x  e.  ( B  ^m  ( M  X.  N
) ) ,  y  e.  ( B  ^m  N )  |->  ( i  e.  M  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) ) )
49 mvmulfval.r . . . 4  |-  ( ph  ->  R  e.  V )
50 elex 3212 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
5149, 50syl 17 . . 3  |-  ( ph  ->  R  e.  _V )
52 opex 4932 . . . 4  |-  <. M ,  N >.  e.  _V
5352a1i 11 . . 3  |-  ( ph  -> 
<. M ,  N >.  e. 
_V )
54 ovex 6678 . . . . 5  |-  ( B  ^m  ( M  X.  N ) )  e. 
_V
55 ovex 6678 . . . . 5  |-  ( B  ^m  N )  e. 
_V
5654, 55mpt2ex 7247 . . . 4  |-  ( x  e.  ( B  ^m  ( M  X.  N
) ) ,  y  e.  ( B  ^m  N )  |->  ( i  e.  M  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) )  e.  _V
5756a1i 11 . . 3  |-  ( ph  ->  ( x  e.  ( B  ^m  ( M  X.  N ) ) ,  y  e.  ( B  ^m  N ) 
|->  ( i  e.  M  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) )  e.  _V )
583, 48, 51, 53, 57ovmpt2d 6788 . 2  |-  ( ph  ->  ( R maVecMul  <. M ,  N >. )  =  ( x  e.  ( B  ^m  ( M  X.  N ) ) ,  y  e.  ( B  ^m  N )  |->  ( i  e.  M  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) ) )
591, 58syl5eq 2668 1  |-  ( ph  ->  .X.  =  ( x  e.  ( B  ^m  ( M  X.  N
) ) ,  y  e.  ( B  ^m  N )  |->  ( i  e.  M  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
y `  j )
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mvmul 20347
This theorem is referenced by:  mvmulval  20349  mavmuldm  20356  mavmul0g  20359
  Copyright terms: Public domain W3C validator