| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvmulfval | Structured version Visualization version Unicode version | ||
| Description: Functional value of the matrix vector multiplication operator. (Contributed by AV, 23-Feb-2019.) |
| Ref | Expression |
|---|---|
| mvmulfval.x |
|
| mvmulfval.b |
|
| mvmulfval.t |
|
| mvmulfval.r |
|
| mvmulfval.m |
|
| mvmulfval.n |
|
| Ref | Expression |
|---|---|
| mvmulfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvmulfval.x |
. 2
| |
| 2 | df-mvmul 20347 |
. . . 4
| |
| 3 | 2 | a1i 11 |
. . 3
|
| 4 | fvex 6201 |
. . . . 5
| |
| 5 | fvex 6201 |
. . . . 5
| |
| 6 | xpeq12 5134 |
. . . . . . 7
| |
| 7 | 6 | oveq2d 6666 |
. . . . . 6
|
| 8 | oveq2 6658 |
. . . . . . 7
| |
| 9 | 8 | adantl 482 |
. . . . . 6
|
| 10 | simpl 473 |
. . . . . . 7
| |
| 11 | simpr 477 |
. . . . . . . . 9
| |
| 12 | 11 | mpteq1d 4738 |
. . . . . . . 8
|
| 13 | 12 | oveq2d 6666 |
. . . . . . 7
|
| 14 | 10, 13 | mpteq12dv 4733 |
. . . . . 6
|
| 15 | 7, 9, 14 | mpt2eq123dv 6717 |
. . . . 5
|
| 16 | 4, 5, 15 | csbie2 3563 |
. . . 4
|
| 17 | simprl 794 |
. . . . . . . 8
| |
| 18 | 17 | fveq2d 6195 |
. . . . . . 7
|
| 19 | mvmulfval.b |
. . . . . . 7
| |
| 20 | 18, 19 | syl6eqr 2674 |
. . . . . 6
|
| 21 | fveq2 6191 |
. . . . . . . . 9
| |
| 22 | 21 | ad2antll 765 |
. . . . . . . 8
|
| 23 | mvmulfval.m |
. . . . . . . . . 10
| |
| 24 | mvmulfval.n |
. . . . . . . . . 10
| |
| 25 | op1stg 7180 |
. . . . . . . . . 10
| |
| 26 | 23, 24, 25 | syl2anc 693 |
. . . . . . . . 9
|
| 27 | 26 | adantr 481 |
. . . . . . . 8
|
| 28 | 22, 27 | eqtrd 2656 |
. . . . . . 7
|
| 29 | fveq2 6191 |
. . . . . . . . 9
| |
| 30 | 29 | ad2antll 765 |
. . . . . . . 8
|
| 31 | op2ndg 7181 |
. . . . . . . . . 10
| |
| 32 | 23, 24, 31 | syl2anc 693 |
. . . . . . . . 9
|
| 33 | 32 | adantr 481 |
. . . . . . . 8
|
| 34 | 30, 33 | eqtrd 2656 |
. . . . . . 7
|
| 35 | 28, 34 | xpeq12d 5140 |
. . . . . 6
|
| 36 | 20, 35 | oveq12d 6668 |
. . . . 5
|
| 37 | 20, 34 | oveq12d 6668 |
. . . . 5
|
| 38 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 39 | 38 | adantr 481 |
. . . . . . . . . . 11
|
| 40 | 39 | adantl 482 |
. . . . . . . . . 10
|
| 41 | mvmulfval.t |
. . . . . . . . . 10
| |
| 42 | 40, 41 | syl6eqr 2674 |
. . . . . . . . 9
|
| 43 | 42 | oveqd 6667 |
. . . . . . . 8
|
| 44 | 34, 43 | mpteq12dv 4733 |
. . . . . . 7
|
| 45 | 17, 44 | oveq12d 6668 |
. . . . . 6
|
| 46 | 28, 45 | mpteq12dv 4733 |
. . . . 5
|
| 47 | 36, 37, 46 | mpt2eq123dv 6717 |
. . . 4
|
| 48 | 16, 47 | syl5eq 2668 |
. . 3
|
| 49 | mvmulfval.r |
. . . 4
| |
| 50 | elex 3212 |
. . . 4
| |
| 51 | 49, 50 | syl 17 |
. . 3
|
| 52 | opex 4932 |
. . . 4
| |
| 53 | 52 | a1i 11 |
. . 3
|
| 54 | ovex 6678 |
. . . . 5
| |
| 55 | ovex 6678 |
. . . . 5
| |
| 56 | 54, 55 | mpt2ex 7247 |
. . . 4
|
| 57 | 56 | a1i 11 |
. . 3
|
| 58 | 3, 48, 51, 53, 57 | ovmpt2d 6788 |
. 2
|
| 59 | 1, 58 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-mvmul 20347 |
| This theorem is referenced by: mvmulval 20349 mavmuldm 20356 mavmul0g 20359 |
| Copyright terms: Public domain | W3C validator |