Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl34 Structured version   Visualization version   Unicode version

Theorem mzpcl34 37294
Description: Defining properties 3 and 4 of a polynomially closed function set  P: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl34  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  ( ( F  oF  +  G
)  e.  P  /\  ( F  oF  x.  G )  e.  P
) )

Proof of Theorem mzpcl34
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . 2  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  F  e.  P )
2 simp3 1063 . 2  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  G  e.  P )
3 simp1 1061 . . . 4  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  P  e.  (mzPolyCld `  V ) )
43elfvexd 6222 . . . . 5  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  V  e.  _V )
5 elmzpcl 37289 . . . . 5  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  P  /\  A. f  e.  V  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  P
)  /\  A. f  e.  P  A. g  e.  P  ( (
f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) ) )
64, 5syl 17 . . . 4  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  ( P  e.  (mzPolyCld `  V )  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V
) )  /\  (
( A. f  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ f } )  e.  P  /\  A. f  e.  V  (
g  e.  ( ZZ 
^m  V )  |->  ( g `  f ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) ) )
73, 6mpbid 222 . . 3  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. f  e.  ZZ  (
( ZZ  ^m  V
)  X.  { f } )  e.  P  /\  A. f  e.  V  ( g  e.  ( ZZ  ^m  V ) 
|->  ( g `  f
) )  e.  P
)  /\  A. f  e.  P  A. g  e.  P  ( (
f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) )
87simprrd 797 . 2  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  A. f  e.  P  A. g  e.  P  ( (
f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) )
9 oveq1 6657 . . . . 5  |-  ( f  =  F  ->  (
f  oF  +  g )  =  ( F  oF  +  g ) )
109eleq1d 2686 . . . 4  |-  ( f  =  F  ->  (
( f  oF  +  g )  e.  P  <->  ( F  oF  +  g )  e.  P ) )
11 oveq1 6657 . . . . 5  |-  ( f  =  F  ->  (
f  oF  x.  g )  =  ( F  oF  x.  g ) )
1211eleq1d 2686 . . . 4  |-  ( f  =  F  ->  (
( f  oF  x.  g )  e.  P  <->  ( F  oF  x.  g )  e.  P ) )
1310, 12anbi12d 747 . . 3  |-  ( f  =  F  ->  (
( ( f  oF  +  g )  e.  P  /\  (
f  oF  x.  g )  e.  P
)  <->  ( ( F  oF  +  g )  e.  P  /\  ( F  oF  x.  g )  e.  P
) ) )
14 oveq2 6658 . . . . 5  |-  ( g  =  G  ->  ( F  oF  +  g )  =  ( F  oF  +  G
) )
1514eleq1d 2686 . . . 4  |-  ( g  =  G  ->  (
( F  oF  +  g )  e.  P  <->  ( F  oF  +  G )  e.  P ) )
16 oveq2 6658 . . . . 5  |-  ( g  =  G  ->  ( F  oF  x.  g
)  =  ( F  oF  x.  G
) )
1716eleq1d 2686 . . . 4  |-  ( g  =  G  ->  (
( F  oF  x.  g )  e.  P  <->  ( F  oF  x.  G )  e.  P ) )
1815, 17anbi12d 747 . . 3  |-  ( g  =  G  ->  (
( ( F  oF  +  g )  e.  P  /\  ( F  oF  x.  g
)  e.  P )  <-> 
( ( F  oF  +  G )  e.  P  /\  ( F  oF  x.  G
)  e.  P ) ) )
1913, 18rspc2va 3323 . 2  |-  ( ( ( F  e.  P  /\  G  e.  P
)  /\  A. f  e.  P  A. g  e.  P  ( (
f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) )  -> 
( ( F  oF  +  G )  e.  P  /\  ( F  oF  x.  G
)  e.  P ) )
201, 2, 8, 19syl21anc 1325 1  |-  ( ( P  e.  (mzPolyCld `  V
)  /\  F  e.  P  /\  G  e.  P
)  ->  ( ( F  oF  +  G
)  e.  P  /\  ( F  oF  x.  G )  e.  P
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857    + caddc 9939    x. cmul 9941   ZZcz 11377  mzPolyCldcmzpcl 37284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mzpcl 37286
This theorem is referenced by:  mzpincl  37297  mzpadd  37301  mzpmul  37302
  Copyright terms: Public domain W3C validator