MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nati Structured version   Visualization version   GIF version

Theorem nati 16615
Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
nati.h 𝐻 = (Hom ‘𝐶)
nati.o · = (comp‘𝐷)
nati.x (𝜑𝑋𝐵)
nati.y (𝜑𝑌𝐵)
nati.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
nati (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))

Proof of Theorem nati
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . . 4 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . . 5 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . . 5 𝐵 = (Base‘𝐶)
4 nati.h . . . . 5 𝐻 = (Hom ‘𝐶)
5 eqid 2622 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
6 nati.o . . . . 5 · = (comp‘𝐷)
72natrcl 16610 . . . . . . . 8 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . . 7 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 475 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 4654 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 224 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 479 . . . . . 6 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 4654 . . . . . 6 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 224 . . . . 5 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 16607 . . . 4 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 222 . . 3 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)(Hom ‘𝐷)(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥))))
1716simprd 479 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)))
18 nati.x . . 3 (𝜑𝑋𝐵)
19 nati.y . . . . 5 (𝜑𝑌𝐵)
2019adantr 481 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐵)
21 nati.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
2221ad2antrr 762 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑅 ∈ (𝑋𝐻𝑌))
23 simplr 792 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋)
24 simpr 477 . . . . . . 7 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌)
2523, 24oveq12d 6668 . . . . . 6 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2622, 25eleqtrrd 2704 . . . . 5 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → 𝑅 ∈ (𝑥𝐻𝑦))
27 simpllr 799 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑥 = 𝑋)
2827fveq2d 6195 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐹𝑥) = (𝐹𝑋))
29 simplr 792 . . . . . . . . . 10 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑦 = 𝑌)
3029fveq2d 6195 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐹𝑦) = (𝐹𝑌))
3128, 30opeq12d 4410 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
3229fveq2d 6195 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐾𝑦) = (𝐾𝑌))
3331, 32oveq12d 6668 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦)) = (⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌)))
3429fveq2d 6195 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐴𝑦) = (𝐴𝑌))
3527, 29oveq12d 6668 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝑥𝐺𝑦) = (𝑋𝐺𝑌))
36 simpr 477 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → 𝑓 = 𝑅)
3735, 36fveq12d 6197 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝑥𝐺𝑦)‘𝑓) = ((𝑋𝐺𝑌)‘𝑅))
3833, 34, 37oveq123d 6671 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)))
3927fveq2d 6195 . . . . . . . . 9 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐾𝑥) = (𝐾𝑋))
4028, 39opeq12d 4410 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ⟨(𝐹𝑥), (𝐾𝑥)⟩ = ⟨(𝐹𝑋), (𝐾𝑋)⟩)
4140, 32oveq12d 6668 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦)) = (⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌)))
4227, 29oveq12d 6668 . . . . . . . 8 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝑥𝐿𝑦) = (𝑋𝐿𝑌))
4342, 36fveq12d 6197 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → ((𝑥𝐿𝑦)‘𝑓) = ((𝑋𝐿𝑌)‘𝑅))
4427fveq2d 6195 . . . . . . 7 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (𝐴𝑥) = (𝐴𝑋))
4541, 43, 44oveq123d 6671 . . . . . 6 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))
4638, 45eqeq12d 2637 . . . . 5 ((((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) ∧ 𝑓 = 𝑅) → (((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) ↔ ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4726, 46rspcdv 3312 . . . 4 (((𝜑𝑥 = 𝑋) ∧ 𝑦 = 𝑌) → (∀𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4820, 47rspcimdv 3310 . . 3 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
4918, 48rspcimdv 3310 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩ · (𝐾𝑦))((𝑥𝐺𝑦)‘𝑓)) = (((𝑥𝐿𝑦)‘𝑓)(⟨(𝐹𝑥), (𝐾𝑥)⟩ · (𝐾𝑦))(𝐴𝑥)) → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋))))
5017, 49mpd 15 1 (𝜑 → ((𝐴𝑌)(⟨(𝐹𝑋), (𝐹𝑌)⟩ · (𝐾𝑌))((𝑋𝐺𝑌)‘𝑅)) = (((𝑋𝐿𝑌)‘𝑅)(⟨(𝐹𝑋), (𝐾𝑋)⟩ · (𝐾𝑌))(𝐴𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  Xcixp 7908  Basecbs 15857  Hom chom 15952  compcco 15953   Func cfunc 16514   Nat cnat 16601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ixp 7909  df-func 16518  df-nat 16603
This theorem is referenced by:  fuccocl  16624  invfuc  16634  evlfcllem  16861  yonedalem3b  16919  yonedainv  16921
  Copyright terms: Public domain W3C validator