| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nati | Structured version Visualization version Unicode version | ||
| Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 |
|
| natixp.2 |
|
| natixp.b |
|
| nati.h |
|
| nati.o |
|
| nati.x |
|
| nati.y |
|
| nati.r |
|
| Ref | Expression |
|---|---|
| nati |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natixp.2 |
. . . 4
| |
| 2 | natrcl.1 |
. . . . 5
| |
| 3 | natixp.b |
. . . . 5
| |
| 4 | nati.h |
. . . . 5
| |
| 5 | eqid 2622 |
. . . . 5
| |
| 6 | nati.o |
. . . . 5
| |
| 7 | 2 | natrcl 16610 |
. . . . . . . 8
|
| 8 | 1, 7 | syl 17 |
. . . . . . 7
|
| 9 | 8 | simpld 475 |
. . . . . 6
|
| 10 | df-br 4654 |
. . . . . 6
| |
| 11 | 9, 10 | sylibr 224 |
. . . . 5
|
| 12 | 8 | simprd 479 |
. . . . . 6
|
| 13 | df-br 4654 |
. . . . . 6
| |
| 14 | 12, 13 | sylibr 224 |
. . . . 5
|
| 15 | 2, 3, 4, 5, 6, 11, 14 | isnat 16607 |
. . . 4
|
| 16 | 1, 15 | mpbid 222 |
. . 3
|
| 17 | 16 | simprd 479 |
. 2
|
| 18 | nati.x |
. . 3
| |
| 19 | nati.y |
. . . . 5
| |
| 20 | 19 | adantr 481 |
. . . 4
|
| 21 | nati.r |
. . . . . . 7
| |
| 22 | 21 | ad2antrr 762 |
. . . . . 6
|
| 23 | simplr 792 |
. . . . . . 7
| |
| 24 | simpr 477 |
. . . . . . 7
| |
| 25 | 23, 24 | oveq12d 6668 |
. . . . . 6
|
| 26 | 22, 25 | eleqtrrd 2704 |
. . . . 5
|
| 27 | simpllr 799 |
. . . . . . . . . 10
| |
| 28 | 27 | fveq2d 6195 |
. . . . . . . . 9
|
| 29 | simplr 792 |
. . . . . . . . . 10
| |
| 30 | 29 | fveq2d 6195 |
. . . . . . . . 9
|
| 31 | 28, 30 | opeq12d 4410 |
. . . . . . . 8
|
| 32 | 29 | fveq2d 6195 |
. . . . . . . 8
|
| 33 | 31, 32 | oveq12d 6668 |
. . . . . . 7
|
| 34 | 29 | fveq2d 6195 |
. . . . . . 7
|
| 35 | 27, 29 | oveq12d 6668 |
. . . . . . . 8
|
| 36 | simpr 477 |
. . . . . . . 8
| |
| 37 | 35, 36 | fveq12d 6197 |
. . . . . . 7
|
| 38 | 33, 34, 37 | oveq123d 6671 |
. . . . . 6
|
| 39 | 27 | fveq2d 6195 |
. . . . . . . . 9
|
| 40 | 28, 39 | opeq12d 4410 |
. . . . . . . 8
|
| 41 | 40, 32 | oveq12d 6668 |
. . . . . . 7
|
| 42 | 27, 29 | oveq12d 6668 |
. . . . . . . 8
|
| 43 | 42, 36 | fveq12d 6197 |
. . . . . . 7
|
| 44 | 27 | fveq2d 6195 |
. . . . . . 7
|
| 45 | 41, 43, 44 | oveq123d 6671 |
. . . . . 6
|
| 46 | 38, 45 | eqeq12d 2637 |
. . . . 5
|
| 47 | 26, 46 | rspcdv 3312 |
. . . 4
|
| 48 | 20, 47 | rspcimdv 3310 |
. . 3
|
| 49 | 18, 48 | rspcimdv 3310 |
. 2
|
| 50 | 17, 49 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-ixp 7909 df-func 16518 df-nat 16603 |
| This theorem is referenced by: fuccocl 16624 invfuc 16634 evlfcllem 16861 yonedalem3b 16919 yonedainv 16921 |
| Copyright terms: Public domain | W3C validator |