MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrel Structured version   Visualization version   Unicode version

Theorem nbgrel 26238
Description: Characterization of a neighbor of a vertex  V in a graph  G. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) (Revised by AV, 26-Oct-2020.) (Proof shortened by AV, 6-Jun-2021.)
Hypotheses
Ref Expression
nbgrel.v  |-  V  =  (Vtx `  G )
nbgrel.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
nbgrel  |-  ( G  e.  W  ->  ( K  e.  ( G NeighbVtx  N )  <->  ( ( K  e.  V  /\  N  e.  V )  /\  K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e
) ) )
Distinct variable groups:    e, E    e, G    e, K    e, N    e, V    e, W

Proof of Theorem nbgrel
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nbgrcl 26233 . . . . 5  |-  ( K  e.  ( G NeighbVtx  N )  ->  N  e.  (Vtx
`  G ) )
2 nbgrel.v . . . . 5  |-  V  =  (Vtx `  G )
31, 2syl6eleqr 2712 . . . 4  |-  ( K  e.  ( G NeighbVtx  N )  ->  N  e.  V
)
43a1i 11 . . 3  |-  ( G  e.  W  ->  ( K  e.  ( G NeighbVtx  N )  ->  N  e.  V ) )
54pm4.71rd 667 . 2  |-  ( G  e.  W  ->  ( K  e.  ( G NeighbVtx  N )  <->  ( N  e.  V  /\  K  e.  ( G NeighbVtx  N )
) ) )
6 nbgrel.e . . . . . . . 8  |-  E  =  (Edg `  G )
72, 6nbgrval 26234 . . . . . . 7  |-  ( N  e.  V  ->  ( G NeighbVtx  N )  =  {
k  e.  ( V 
\  { N }
)  |  E. e  e.  E  { N ,  k }  C_  e } )
87eleq2d 2687 . . . . . 6  |-  ( N  e.  V  ->  ( K  e.  ( G NeighbVtx  N )  <->  K  e.  { k  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  k } 
C_  e } ) )
9 preq2 4269 . . . . . . . . . 10  |-  ( k  =  K  ->  { N ,  k }  =  { N ,  K }
)
109sseq1d 3632 . . . . . . . . 9  |-  ( k  =  K  ->  ( { N ,  k } 
C_  e  <->  { N ,  K }  C_  e
) )
1110rexbidv 3052 . . . . . . . 8  |-  ( k  =  K  ->  ( E. e  e.  E  { N ,  k } 
C_  e  <->  E. e  e.  E  { N ,  K }  C_  e
) )
1211elrab 3363 . . . . . . 7  |-  ( K  e.  { k  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  k }  C_  e }  <->  ( K  e.  ( V  \  { N } )  /\  E. e  e.  E  { N ,  K }  C_  e ) )
13 eldifsn 4317 . . . . . . . 8  |-  ( K  e.  ( V  \  { N } )  <->  ( K  e.  V  /\  K  =/= 
N ) )
1413anbi1i 731 . . . . . . 7  |-  ( ( K  e.  ( V 
\  { N }
)  /\  E. e  e.  E  { N ,  K }  C_  e
)  <->  ( ( K  e.  V  /\  K  =/=  N )  /\  E. e  e.  E  { N ,  K }  C_  e ) )
15 anass 681 . . . . . . 7  |-  ( ( ( K  e.  V  /\  K  =/=  N
)  /\  E. e  e.  E  { N ,  K }  C_  e
)  <->  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) )
1612, 14, 153bitri 286 . . . . . 6  |-  ( K  e.  { k  e.  ( V  \  { N } )  |  E. e  e.  E  { N ,  k }  C_  e }  <->  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) )
178, 16syl6bb 276 . . . . 5  |-  ( N  e.  V  ->  ( K  e.  ( G NeighbVtx  N )  <->  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) ) )
1817adantl 482 . . . 4  |-  ( ( G  e.  W  /\  N  e.  V )  ->  ( K  e.  ( G NeighbVtx  N )  <->  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) ) )
1918pm5.32da 673 . . 3  |-  ( G  e.  W  ->  (
( N  e.  V  /\  K  e.  ( G NeighbVtx  N ) )  <->  ( N  e.  V  /\  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) ) ) )
20 3anass 1042 . . . 4  |-  ( ( ( K  e.  V  /\  N  e.  V
)  /\  K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e )  <-> 
( ( K  e.  V  /\  N  e.  V )  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) )
21 ancom 466 . . . . 5  |-  ( ( K  e.  V  /\  N  e.  V )  <->  ( N  e.  V  /\  K  e.  V )
)
2221anbi1i 731 . . . 4  |-  ( ( ( K  e.  V  /\  N  e.  V
)  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e
) )  <->  ( ( N  e.  V  /\  K  e.  V )  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) )
23 anass 681 . . . 4  |-  ( ( ( N  e.  V  /\  K  e.  V
)  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e
) )  <->  ( N  e.  V  /\  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) ) )
2420, 22, 233bitrri 287 . . 3  |-  ( ( N  e.  V  /\  ( K  e.  V  /\  ( K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) )  <-> 
( ( K  e.  V  /\  N  e.  V )  /\  K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e
) )
2519, 24syl6bb 276 . 2  |-  ( G  e.  W  ->  (
( N  e.  V  /\  K  e.  ( G NeighbVtx  N ) )  <->  ( ( K  e.  V  /\  N  e.  V )  /\  K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e ) ) )
265, 25bitrd 268 1  |-  ( G  e.  W  ->  ( K  e.  ( G NeighbVtx  N )  <->  ( ( K  e.  V  /\  N  e.  V )  /\  K  =/=  N  /\  E. e  e.  E  { N ,  K }  C_  e
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228
This theorem is referenced by:  nbgr2vtx1edg  26246  nbuhgr2vtx1edgblem  26247  nbuhgr2vtx1edgb  26248  nbgrisvtx  26255  nbgrsym  26265  isuvtxa  26295  iscplgredg  26313  cusgrexi  26339  structtocusgr  26342
  Copyright terms: Public domain W3C validator