MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclsi Structured version   Visualization version   GIF version

Theorem flimclsi 21782
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimclsi (𝑆𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem flimclsi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
21flimfil 21773 . . . . . . 7 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
32ad2antlr 763 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimnei 21771 . . . . . . 7 ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦𝐹)
54adantll 750 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦𝐹)
6 simpll 790 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆𝐹)
7 filinn0 21664 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑦𝐹𝑆𝐹) → (𝑦𝑆) ≠ ∅)
83, 5, 6, 7syl3anc 1326 . . . . 5 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦𝑆) ≠ ∅)
98ralrimiva 2966 . . . 4 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅)
10 flimtop 21769 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
1110adantl 482 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top)
12 filelss 21656 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑆𝐹) → 𝑆 𝐽)
1312ancoms 469 . . . . . 6 ((𝑆𝐹𝐹 ∈ (Fil‘ 𝐽)) → 𝑆 𝐽)
142, 13sylan2 491 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 𝐽)
151flimelbas 21772 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 𝐽)
1615adantl 482 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 𝐽)
171neindisj2 20927 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑥 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅))
1811, 14, 16, 17syl3anc 1326 . . . 4 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅))
199, 18mpbird 247 . . 3 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))
2019ex 450 . 2 (𝑆𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
2120ssrdv 3609 1 (𝑆𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wne 2794  wral 2912  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436  cfv 5888  (class class class)co 6650  Topctop 20698  clsccl 20822  neicnei 20901  Filcfil 21649   fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  flimcls  21789  flimfcls  21830  cnextcn  21871  cmetss  23113  minveclem4  23203
  Copyright terms: Public domain W3C validator