![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsnd | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsnd | ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsn 4321 | . 2 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1990 ∖ cdif 3571 {csn 4177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-sn 4178 |
This theorem is referenced by: difsnb 4337 fsnunf2 6452 rpnnen2lem9 14951 fprodfvdvdsd 15058 ramub1lem1 15730 ramub1lem2 15731 prmdvdsprmo 15746 acsfiindd 17177 gsummgp0 18608 islindf4 20177 gsummatr01lem3 20463 nbgrnself 26257 omsmeas 30385 onint1 32448 poimirlem30 33439 prtlem80 34146 gneispace0nelrn3 38440 supminfxr2 39699 fsumnncl 39803 fsumsplit1 39804 hoidmv1lelem2 40806 hspmbllem1 40840 hspmbllem2 40841 fsumsplitsndif 41343 mgpsumunsn 42140 |
Copyright terms: Public domain | W3C validator |