Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem1 Structured version   Visualization version   GIF version

Theorem hspmbllem1 40840
Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. This is Step (a) of Lemma 115F of [Fremlin1] p. 31. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem1.x (𝜑𝑋 ∈ Fin)
hspmbllem1.k (𝜑𝐾𝑋)
hspmbllem1.y (𝜑𝑌 ∈ ℝ)
hspmbllem1.a (𝜑𝐴:𝑋⟶ℝ)
hspmbllem1.b (𝜑𝐵:𝑋⟶ℝ)
hspmbllem1.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hspmbllem1.t 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
hspmbllem1.s 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
Assertion
Ref Expression
hspmbllem1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) +𝑒 (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑎,𝑏,𝑘   𝐴,𝑐,,𝑘   𝐵,𝑎,𝑏,𝑘   𝐵,𝑐,   𝐾,𝑐,,𝑘,𝑥   𝑦,𝐾,𝑐,,𝑘   𝑆,𝑎,𝑏,𝑘   𝑇,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,,𝑦   𝑌,𝑎,𝑏,𝑘,𝑥   𝑌,𝑐,,𝑦   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑆(𝑥,𝑦,,𝑐)   𝑇(𝑥,𝑦,,𝑐)   𝐾(𝑎,𝑏)   𝐿(𝑥,𝑦,,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem hspmbllem1
StepHypRef Expression
1 rge0ssre 12280 . . . 4 (0[,)+∞) ⊆ ℝ
2 hspmbllem1.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
3 hspmbllem1.x . . . . 5 (𝜑𝑋 ∈ Fin)
4 hspmbllem1.a . . . . 5 (𝜑𝐴:𝑋⟶ℝ)
5 hspmbllem1.t . . . . . 6 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
6 hspmbllem1.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
7 hspmbllem1.b . . . . . 6 (𝜑𝐵:𝑋⟶ℝ)
85, 6, 3, 7hsphoif 40790 . . . . 5 (𝜑 → ((𝑇𝑌)‘𝐵):𝑋⟶ℝ)
92, 3, 4, 8hoidmvcl 40796 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) ∈ (0[,)+∞))
101, 9sseldi 3601 . . 3 (𝜑 → (𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) ∈ ℝ)
11 hspmbllem1.s . . . . . 6 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
1211, 6, 3, 4hoidifhspf 40832 . . . . 5 (𝜑 → ((𝑆𝑌)‘𝐴):𝑋⟶ℝ)
132, 3, 12, 7hoidmvcl 40796 . . . 4 (𝜑 → (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵) ∈ (0[,)+∞))
141, 13sseldi 3601 . . 3 (𝜑 → (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵) ∈ ℝ)
1510, 14rexaddd 12065 . 2 (𝜑 → ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) +𝑒 (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)) = ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) + (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)))
16 hspmbllem1.k . . . . . 6 (𝜑𝐾𝑋)
17 ne0i 3921 . . . . . 6 (𝐾𝑋𝑋 ≠ ∅)
1816, 17syl 17 . . . . 5 (𝜑𝑋 ≠ ∅)
192, 3, 18, 4, 8hoidmvn0val 40798 . . . 4 (𝜑 → (𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))))
202, 3, 18, 12, 7hoidmvn0val 40798 . . . 4 (𝜑 → (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
2119, 20oveq12d 6668 . . 3 (𝜑 → ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) + (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)) = (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) + ∏𝑘𝑋 (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)))))
22 uncom 3757 . . . . . . . . 9 ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))
2322a1i 11 . . . . . . . 8 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})))
2416snssd 4340 . . . . . . . . 9 (𝜑 → {𝐾} ⊆ 𝑋)
25 undif 4049 . . . . . . . . 9 ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋)
2624, 25sylib 208 . . . . . . . 8 (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋)
2723, 26eqtrd 2656 . . . . . . 7 (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋)
2827eqcomd 2628 . . . . . 6 (𝜑𝑋 = ((𝑋 ∖ {𝐾}) ∪ {𝐾}))
2928prodeq1d 14651 . . . . 5 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) = ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))))
30 nfv 1843 . . . . . 6 𝑘𝜑
31 nfcv 2764 . . . . . 6 𝑘(vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))
32 difssd 3738 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝐾}) ⊆ 𝑋)
333, 32ssfid 8183 . . . . . 6 (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin)
34 neldifsnd 4322 . . . . . 6 (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾}))
354adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝐴:𝑋⟶ℝ)
3632sselda 3603 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝑘𝑋)
3735, 36ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (𝐴𝑘) ∈ ℝ)
386adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝑌 ∈ ℝ)
393adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝑋 ∈ Fin)
407adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝐵:𝑋⟶ℝ)
415, 38, 39, 40hsphoif 40790 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → ((𝑇𝑌)‘𝐵):𝑋⟶ℝ)
4241, 36ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑇𝑌)‘𝐵)‘𝑘) ∈ ℝ)
43 volicore 40795 . . . . . . . 8 (((𝐴𝑘) ∈ ℝ ∧ (((𝑇𝑌)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) ∈ ℝ)
4437, 42, 43syl2anc 693 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) ∈ ℝ)
4544recnd 10068 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) ∈ ℂ)
46 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (𝐴𝑘) = (𝐴𝐾))
47 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑇𝑌)‘𝐵)‘𝑘) = (((𝑇𝑌)‘𝐵)‘𝐾))
4846, 47oveq12d 6668 . . . . . . 7 (𝑘 = 𝐾 → ((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘)) = ((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))
4948fveq2d 6195 . . . . . 6 (𝑘 = 𝐾 → (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) = (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))))
504, 16ffvelrnd 6360 . . . . . . . 8 (𝜑 → (𝐴𝐾) ∈ ℝ)
518, 16ffvelrnd 6360 . . . . . . . 8 (𝜑 → (((𝑇𝑌)‘𝐵)‘𝐾) ∈ ℝ)
52 volicore 40795 . . . . . . . 8 (((𝐴𝐾) ∈ ℝ ∧ (((𝑇𝑌)‘𝐵)‘𝐾) ∈ ℝ) → (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) ∈ ℝ)
5350, 51, 52syl2anc 693 . . . . . . 7 (𝜑 → (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) ∈ ℝ)
5453recnd 10068 . . . . . 6 (𝜑 → (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) ∈ ℂ)
5530, 31, 33, 16, 34, 45, 49, 54fprodsplitsn 14720 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))))
565, 38, 39, 40, 36hsphoival 40793 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑇𝑌)‘𝐵)‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), (𝐵𝑘), if((𝐵𝑘) ≤ 𝑌, (𝐵𝑘), 𝑌)))
57 iftrue 4092 . . . . . . . . . . 11 (𝑘 ∈ (𝑋 ∖ {𝐾}) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), (𝐵𝑘), if((𝐵𝑘) ≤ 𝑌, (𝐵𝑘), 𝑌)) = (𝐵𝑘))
5857adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), (𝐵𝑘), if((𝐵𝑘) ≤ 𝑌, (𝐵𝑘), 𝑌)) = (𝐵𝑘))
5956, 58eqtrd 2656 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑇𝑌)‘𝐵)‘𝑘) = (𝐵𝑘))
6059oveq2d 6666 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → ((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
6160fveq2d 6195 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
6261prodeq2dv 14653 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
6362oveq1d 6665 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))))
6429, 55, 633eqtrd 2660 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))))
6528prodeq1d 14651 . . . . 5 (𝜑 → ∏𝑘𝑋 (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
66 nfcv 2764 . . . . . 6 𝑘(vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))
6712adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → ((𝑆𝑌)‘𝐴):𝑋⟶ℝ)
6867, 36ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑆𝑌)‘𝐴)‘𝑘) ∈ ℝ)
6959, 42eqeltrrd 2702 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (𝐵𝑘) ∈ ℝ)
70 volicore 40795 . . . . . . . 8 (((((𝑆𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
7168, 69, 70syl2anc 693 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
7271recnd 10068 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℂ)
73 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (((𝑆𝑌)‘𝐴)‘𝑘) = (((𝑆𝑌)‘𝐴)‘𝐾))
74 fveq2 6191 . . . . . . . 8 (𝑘 = 𝐾 → (𝐵𝑘) = (𝐵𝐾))
7573, 74oveq12d 6668 . . . . . . 7 (𝑘 = 𝐾 → ((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) = ((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))
7675fveq2d 6195 . . . . . 6 (𝑘 = 𝐾 → (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) = (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))))
7712, 16ffvelrnd 6360 . . . . . . . 8 (𝜑 → (((𝑆𝑌)‘𝐴)‘𝐾) ∈ ℝ)
787, 16ffvelrnd 6360 . . . . . . . 8 (𝜑 → (𝐵𝐾) ∈ ℝ)
79 volicore 40795 . . . . . . . 8 (((((𝑆𝑌)‘𝐴)‘𝐾) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ) → (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))) ∈ ℝ)
8077, 78, 79syl2anc 693 . . . . . . 7 (𝜑 → (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))) ∈ ℝ)
8180recnd 10068 . . . . . 6 (𝜑 → (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))) ∈ ℂ)
8230, 66, 33, 16, 34, 72, 76, 81fprodsplitsn 14720 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))))
8311, 38, 39, 35, 36hoidifhspval3 40833 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑆𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
84 eldifsni 4320 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑋 ∖ {𝐾}) → 𝑘𝐾)
85 neneq 2800 . . . . . . . . . . . . 13 (𝑘𝐾 → ¬ 𝑘 = 𝐾)
8684, 85syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (𝑋 ∖ {𝐾}) → ¬ 𝑘 = 𝐾)
8786iffalsed 4097 . . . . . . . . . . 11 (𝑘 ∈ (𝑋 ∖ {𝐾}) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
8887adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
8983, 88eqtrd 2656 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑆𝑌)‘𝐴)‘𝑘) = (𝐴𝑘))
9089oveq1d 6665 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → ((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) = ((𝐴𝑘)[,)(𝐵𝑘)))
9190fveq2d 6195 . . . . . . 7 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9291prodeq2dv 14653 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9392oveq1d 6665 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))))
9465, 82, 933eqtrd 2660 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))))
9564, 94oveq12d 6668 . . 3 (𝜑 → (∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(((𝑇𝑌)‘𝐵)‘𝑘))) + ∏𝑘𝑋 (vol‘((((𝑆𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)))) = ((∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))) + (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))))))
9628prodeq1d 14651 . . . . 5 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))))
97 nfcv 2764 . . . . . 6 𝑘(vol‘((𝐴𝐾)[,)(𝐵𝐾)))
9861, 45eqeltrrd 2702 . . . . . 6 ((𝜑𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
9946, 74oveq12d 6668 . . . . . . 7 (𝑘 = 𝐾 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝐾)[,)(𝐵𝐾)))
10099fveq2d 6195 . . . . . 6 (𝑘 = 𝐾 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
101 volicore 40795 . . . . . . . 8 (((𝐴𝐾) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ) → (vol‘((𝐴𝐾)[,)(𝐵𝐾))) ∈ ℝ)
10250, 78, 101syl2anc 693 . . . . . . 7 (𝜑 → (vol‘((𝐴𝐾)[,)(𝐵𝐾))) ∈ ℝ)
103102recnd 10068 . . . . . 6 (𝜑 → (vol‘((𝐴𝐾)[,)(𝐵𝐾))) ∈ ℂ)
10430, 97, 33, 16, 34, 98, 100, 103fprodsplitsn 14720 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(𝐵𝐾)))))
10596, 104eqtrd 2656 . . . 4 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(𝐵𝐾)))))
1065, 6, 3, 7, 16hsphoival 40793 . . . . . . . . . 10 (𝜑 → (((𝑇𝑌)‘𝐵)‘𝐾) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), (𝐵𝐾), if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌)))
10734iffalsed 4097 . . . . . . . . . 10 (𝜑 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), (𝐵𝐾), if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌)) = if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))
108106, 107eqtrd 2656 . . . . . . . . 9 (𝜑 → (((𝑇𝑌)‘𝐵)‘𝐾) = if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))
109108oveq2d 6666 . . . . . . . 8 (𝜑 → ((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)) = ((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌)))
110109fveq2d 6195 . . . . . . 7 (𝜑 → (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) = (vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))))
11111, 6, 3, 4, 16hoidifhspval3 40833 . . . . . . . . . 10 (𝜑 → (((𝑆𝑌)‘𝐴)‘𝐾) = if(𝐾 = 𝐾, if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌), (𝐴𝐾)))
112 eqid 2622 . . . . . . . . . . . 12 𝐾 = 𝐾
113112iftruei 4093 . . . . . . . . . . 11 if(𝐾 = 𝐾, if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌), (𝐴𝐾)) = if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)
114113a1i 11 . . . . . . . . . 10 (𝜑 → if(𝐾 = 𝐾, if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌), (𝐴𝐾)) = if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌))
115111, 114eqtrd 2656 . . . . . . . . 9 (𝜑 → (((𝑆𝑌)‘𝐴)‘𝐾) = if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌))
116115oveq1d 6665 . . . . . . . 8 (𝜑 → ((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)) = (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))
117116fveq2d 6195 . . . . . . 7 (𝜑 → (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))) = (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾))))
118110, 117oveq12d 6668 . . . . . 6 (𝜑 → ((vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))))
119 iftrue 4092 . . . . . . . . . . . 12 ((𝐵𝐾) ≤ 𝑌 → if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌) = (𝐵𝐾))
120119oveq2d 6666 . . . . . . . . . . 11 ((𝐵𝐾) ≤ 𝑌 → ((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌)) = ((𝐴𝐾)[,)(𝐵𝐾)))
121120fveq2d 6195 . . . . . . . . . 10 ((𝐵𝐾) ≤ 𝑌 → (vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
122121oveq1d 6665 . . . . . . . . 9 ((𝐵𝐾) ≤ 𝑌 → ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)(𝐵𝐾))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))))
123122adantl 482 . . . . . . . 8 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)(𝐵𝐾))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))))
124 iftrue 4092 . . . . . . . . . . . . . . 15 (𝑌 ≤ (𝐴𝐾) → if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌) = (𝐴𝐾))
125124oveq1d 6665 . . . . . . . . . . . . . 14 (𝑌 ≤ (𝐴𝐾) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = ((𝐴𝐾)[,)(𝐵𝐾)))
126125adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = ((𝐴𝐾)[,)(𝐵𝐾)))
12778ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (𝐵𝐾) ∈ ℝ)
1286ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → 𝑌 ∈ ℝ)
12950ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (𝐴𝐾) ∈ ℝ)
130 simplr 792 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (𝐵𝐾) ≤ 𝑌)
131 simpr 477 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → 𝑌 ≤ (𝐴𝐾))
132127, 128, 129, 130, 131letrd 10194 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (𝐵𝐾) ≤ (𝐴𝐾))
133129rexrd 10089 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (𝐴𝐾) ∈ ℝ*)
134127rexrd 10089 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (𝐵𝐾) ∈ ℝ*)
135 ico0 12221 . . . . . . . . . . . . . . 15 (((𝐴𝐾) ∈ ℝ* ∧ (𝐵𝐾) ∈ ℝ*) → (((𝐴𝐾)[,)(𝐵𝐾)) = ∅ ↔ (𝐵𝐾) ≤ (𝐴𝐾)))
136133, 134, 135syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (((𝐴𝐾)[,)(𝐵𝐾)) = ∅ ↔ (𝐵𝐾) ≤ (𝐴𝐾)))
137132, 136mpbird 247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → ((𝐴𝐾)[,)(𝐵𝐾)) = ∅)
138126, 137eqtrd 2656 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴𝐾)) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = ∅)
139 iffalse 4095 . . . . . . . . . . . . . . 15 𝑌 ≤ (𝐴𝐾) → if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌) = 𝑌)
140139oveq1d 6665 . . . . . . . . . . . . . 14 𝑌 ≤ (𝐴𝐾) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = (𝑌[,)(𝐵𝐾)))
141140adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = (𝑌[,)(𝐵𝐾)))
142 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (𝐵𝐾) ≤ 𝑌)
1436rexrd 10089 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ ℝ*)
144143adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → 𝑌 ∈ ℝ*)
14578rexrd 10089 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵𝐾) ∈ ℝ*)
146145adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (𝐵𝐾) ∈ ℝ*)
147 ico0 12221 . . . . . . . . . . . . . . . 16 ((𝑌 ∈ ℝ* ∧ (𝐵𝐾) ∈ ℝ*) → ((𝑌[,)(𝐵𝐾)) = ∅ ↔ (𝐵𝐾) ≤ 𝑌))
148144, 146, 147syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → ((𝑌[,)(𝐵𝐾)) = ∅ ↔ (𝐵𝐾) ≤ 𝑌))
149142, 148mpbird 247 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (𝑌[,)(𝐵𝐾)) = ∅)
150149adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (𝑌[,)(𝐵𝐾)) = ∅)
151141, 150eqtrd 2656 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = ∅)
152138, 151pm2.61dan 832 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)) = ∅)
153152fveq2d 6195 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾))) = (vol‘∅))
154 vol0 40175 . . . . . . . . . . 11 (vol‘∅) = 0
155154a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (vol‘∅) = 0)
156153, 155eqtrd 2656 . . . . . . . . 9 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾))) = 0)
157156oveq2d 6666 . . . . . . . 8 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)(𝐵𝐾))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)(𝐵𝐾))) + 0))
158103addid1d 10236 . . . . . . . . 9 (𝜑 → ((vol‘((𝐴𝐾)[,)(𝐵𝐾))) + 0) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
159158adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)(𝐵𝐾))) + 0) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
160123, 157, 1593eqtrd 2660 . . . . . . 7 ((𝜑 ∧ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
161 iffalse 4095 . . . . . . . . . . . 12 (¬ (𝐵𝐾) ≤ 𝑌 → if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌) = 𝑌)
162161oveq2d 6666 . . . . . . . . . . 11 (¬ (𝐵𝐾) ≤ 𝑌 → ((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌)) = ((𝐴𝐾)[,)𝑌))
163162fveq2d 6195 . . . . . . . . . 10 (¬ (𝐵𝐾) ≤ 𝑌 → (vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) = (vol‘((𝐴𝐾)[,)𝑌)))
164163adantl 482 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → (vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) = (vol‘((𝐴𝐾)[,)𝑌)))
165164oveq1d 6665 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))))
166 simpl 473 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → 𝜑)
167 simpr 477 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → ¬ (𝐵𝐾) ≤ 𝑌)
168166, 6syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → 𝑌 ∈ ℝ)
169166, 78syl 17 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → (𝐵𝐾) ∈ ℝ)
170168, 169ltnled 10184 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → (𝑌 < (𝐵𝐾) ↔ ¬ (𝐵𝐾) ≤ 𝑌))
171167, 170mpbird 247 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → 𝑌 < (𝐵𝐾))
172125fveq2d 6195 . . . . . . . . . . . . 13 (𝑌 ≤ (𝐴𝐾) → (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
173172oveq2d 6666 . . . . . . . . . . . 12 (𝑌 ≤ (𝐴𝐾) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))))
174173adantl 482 . . . . . . . . . . 11 (((𝜑𝑌 < (𝐵𝐾)) ∧ 𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))))
175 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≤ (𝐴𝐾)) → 𝑌 ≤ (𝐴𝐾))
17650rexrd 10089 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐾) ∈ ℝ*)
177176adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≤ (𝐴𝐾)) → (𝐴𝐾) ∈ ℝ*)
178143adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑌 ≤ (𝐴𝐾)) → 𝑌 ∈ ℝ*)
179 ico0 12221 . . . . . . . . . . . . . . . . 17 (((𝐴𝐾) ∈ ℝ*𝑌 ∈ ℝ*) → (((𝐴𝐾)[,)𝑌) = ∅ ↔ 𝑌 ≤ (𝐴𝐾)))
180177, 178, 179syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 ≤ (𝐴𝐾)) → (((𝐴𝐾)[,)𝑌) = ∅ ↔ 𝑌 ≤ (𝐴𝐾)))
181175, 180mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑𝑌 ≤ (𝐴𝐾)) → ((𝐴𝐾)[,)𝑌) = ∅)
182181fveq2d 6195 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≤ (𝐴𝐾)) → (vol‘((𝐴𝐾)[,)𝑌)) = (vol‘∅))
183154a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑌 ≤ (𝐴𝐾)) → (vol‘∅) = 0)
184182, 183eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑𝑌 ≤ (𝐴𝐾)) → (vol‘((𝐴𝐾)[,)𝑌)) = 0)
185184oveq1d 6665 . . . . . . . . . . . 12 ((𝜑𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))) = (0 + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))))
186185adantlr 751 . . . . . . . . . . 11 (((𝜑𝑌 < (𝐵𝐾)) ∧ 𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))) = (0 + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))))
187103addid2d 10237 . . . . . . . . . . . 12 (𝜑 → (0 + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
188187ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑌 < (𝐵𝐾)) ∧ 𝑌 ≤ (𝐴𝐾)) → (0 + (vol‘((𝐴𝐾)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
189174, 186, 1883eqtrd 2660 . . . . . . . . . 10 (((𝜑𝑌 < (𝐵𝐾)) ∧ 𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
190140fveq2d 6195 . . . . . . . . . . . . 13 𝑌 ≤ (𝐴𝐾) → (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾))) = (vol‘(𝑌[,)(𝐵𝐾))))
191190oveq2d 6666 . . . . . . . . . . . 12 𝑌 ≤ (𝐴𝐾) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵𝐾)))))
192191adantl 482 . . . . . . . . . . 11 (((𝜑𝑌 < (𝐵𝐾)) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵𝐾)))))
193 simpl 473 . . . . . . . . . . . 12 (((𝜑𝑌 < (𝐵𝐾)) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (𝜑𝑌 < (𝐵𝐾)))
194 simpr 477 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → ¬ 𝑌 ≤ (𝐴𝐾))
19550adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (𝐴𝐾) ∈ ℝ)
1966adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → 𝑌 ∈ ℝ)
197195, 196ltnled 10184 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → ((𝐴𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝐴𝐾)))
198194, 197mpbird 247 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (𝐴𝐾) < 𝑌)
199198adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑌 < (𝐵𝐾)) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → (𝐴𝐾) < 𝑌)
20050adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴𝐾) < 𝑌) → (𝐴𝐾) ∈ ℝ)
2016adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴𝐾) < 𝑌) → 𝑌 ∈ ℝ)
202 volico 40200 . . . . . . . . . . . . . . . 16 (((𝐴𝐾) ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘((𝐴𝐾)[,)𝑌)) = if((𝐴𝐾) < 𝑌, (𝑌 − (𝐴𝐾)), 0))
203200, 201, 202syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴𝐾) < 𝑌) → (vol‘((𝐴𝐾)[,)𝑌)) = if((𝐴𝐾) < 𝑌, (𝑌 − (𝐴𝐾)), 0))
204 iftrue 4092 . . . . . . . . . . . . . . . 16 ((𝐴𝐾) < 𝑌 → if((𝐴𝐾) < 𝑌, (𝑌 − (𝐴𝐾)), 0) = (𝑌 − (𝐴𝐾)))
205204adantl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴𝐾) < 𝑌) → if((𝐴𝐾) < 𝑌, (𝑌 − (𝐴𝐾)), 0) = (𝑌 − (𝐴𝐾)))
206203, 205eqtrd 2656 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴𝐾) < 𝑌) → (vol‘((𝐴𝐾)[,)𝑌)) = (𝑌 − (𝐴𝐾)))
207206adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (vol‘((𝐴𝐾)[,)𝑌)) = (𝑌 − (𝐴𝐾)))
2086adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 < (𝐵𝐾)) → 𝑌 ∈ ℝ)
20978adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑌 < (𝐵𝐾)) → (𝐵𝐾) ∈ ℝ)
210 volico 40200 . . . . . . . . . . . . . . . 16 ((𝑌 ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ) → (vol‘(𝑌[,)(𝐵𝐾))) = if(𝑌 < (𝐵𝐾), ((𝐵𝐾) − 𝑌), 0))
211208, 209, 210syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑌 < (𝐵𝐾)) → (vol‘(𝑌[,)(𝐵𝐾))) = if(𝑌 < (𝐵𝐾), ((𝐵𝐾) − 𝑌), 0))
212 iftrue 4092 . . . . . . . . . . . . . . . 16 (𝑌 < (𝐵𝐾) → if(𝑌 < (𝐵𝐾), ((𝐵𝐾) − 𝑌), 0) = ((𝐵𝐾) − 𝑌))
213212adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑌 < (𝐵𝐾)) → if(𝑌 < (𝐵𝐾), ((𝐵𝐾) − 𝑌), 0) = ((𝐵𝐾) − 𝑌))
214211, 213eqtrd 2656 . . . . . . . . . . . . . 14 ((𝜑𝑌 < (𝐵𝐾)) → (vol‘(𝑌[,)(𝐵𝐾))) = ((𝐵𝐾) − 𝑌))
215214adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (vol‘(𝑌[,)(𝐵𝐾))) = ((𝐵𝐾) − 𝑌))
216207, 215oveq12d 6668 . . . . . . . . . . . 12 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵𝐾)))) = ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)))
217193, 199, 216syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑌 < (𝐵𝐾)) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵𝐾)))) = ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)))
218200adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (𝐴𝐾) ∈ ℝ)
219208adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → 𝑌 ∈ ℝ)
220209adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (𝐵𝐾) ∈ ℝ)
221 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (𝐴𝐾) < 𝑌)
222 simplr 792 . . . . . . . . . . . . . . . 16 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → 𝑌 < (𝐵𝐾))
223218, 219, 220, 221, 222lttrd 10198 . . . . . . . . . . . . . . 15 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (𝐴𝐾) < (𝐵𝐾))
224223iftrued 4094 . . . . . . . . . . . . . 14 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → if((𝐴𝐾) < (𝐵𝐾), ((𝐵𝐾) − (𝐴𝐾)), 0) = ((𝐵𝐾) − (𝐴𝐾)))
225224eqcomd 2628 . . . . . . . . . . . . 13 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → ((𝐵𝐾) − (𝐴𝐾)) = if((𝐴𝐾) < (𝐵𝐾), ((𝐵𝐾) − (𝐴𝐾)), 0))
2266, 50resubcld 10458 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 − (𝐴𝐾)) ∈ ℝ)
227226recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑌 − (𝐴𝐾)) ∈ ℂ)
22878, 6resubcld 10458 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵𝐾) − 𝑌) ∈ ℝ)
229228recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵𝐾) − 𝑌) ∈ ℂ)
230227, 229addcomd 10238 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)) = (((𝐵𝐾) − 𝑌) + (𝑌 − (𝐴𝐾))))
23178recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵𝐾) ∈ ℂ)
2326recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑𝑌 ∈ ℂ)
23350recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐾) ∈ ℂ)
234231, 232, 233npncand 10416 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐵𝐾) − 𝑌) + (𝑌 − (𝐴𝐾))) = ((𝐵𝐾) − (𝐴𝐾)))
235230, 234eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)) = ((𝐵𝐾) − (𝐴𝐾)))
236235ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)) = ((𝐵𝐾) − (𝐴𝐾)))
237 volico 40200 . . . . . . . . . . . . . 14 (((𝐴𝐾) ∈ ℝ ∧ (𝐵𝐾) ∈ ℝ) → (vol‘((𝐴𝐾)[,)(𝐵𝐾))) = if((𝐴𝐾) < (𝐵𝐾), ((𝐵𝐾) − (𝐴𝐾)), 0))
238218, 220, 237syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → (vol‘((𝐴𝐾)[,)(𝐵𝐾))) = if((𝐴𝐾) < (𝐵𝐾), ((𝐵𝐾) − (𝐴𝐾)), 0))
239225, 236, 2383eqtr4d 2666 . . . . . . . . . . . 12 (((𝜑𝑌 < (𝐵𝐾)) ∧ (𝐴𝐾) < 𝑌) → ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
240193, 199, 239syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑌 < (𝐵𝐾)) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → ((𝑌 − (𝐴𝐾)) + ((𝐵𝐾) − 𝑌)) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
241192, 217, 2403eqtrd 2660 . . . . . . . . . 10 (((𝜑𝑌 < (𝐵𝐾)) ∧ ¬ 𝑌 ≤ (𝐴𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
242189, 241pm2.61dan 832 . . . . . . . . 9 ((𝜑𝑌 < (𝐵𝐾)) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
243166, 171, 242syl2anc 693 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
244165, 243eqtrd 2656 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵𝐾) ≤ 𝑌) → ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
245160, 244pm2.61dan 832 . . . . . 6 (𝜑 → ((vol‘((𝐴𝐾)[,)if((𝐵𝐾) ≤ 𝑌, (𝐵𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴𝐾), (𝐴𝐾), 𝑌)[,)(𝐵𝐾)))) = (vol‘((𝐴𝐾)[,)(𝐵𝐾))))
246118, 245eqtr2d 2657 . . . . 5 (𝜑 → (vol‘((𝐴𝐾)[,)(𝐵𝐾))) = ((vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾)))))
247246oveq2d 6666 . . . 4 (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(𝐵𝐾)))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · ((vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))))))
24833, 98fprodcl 14682 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
249248, 54, 81adddid 10064 . . . 4 (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · ((vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))))) = ((∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))) + (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))))))
250105, 247, 2493eqtrrd 2661 . . 3 (𝜑 → ((∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((𝐴𝐾)[,)(((𝑇𝑌)‘𝐵)‘𝐾)))) + (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) · (vol‘((((𝑆𝑌)‘𝐴)‘𝐾)[,)(𝐵𝐾))))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
25121, 95, 2503eqtrd 2660 . 2 (𝜑 → ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) + (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
2522, 3, 18, 4, 7hoidmvn0val 40798 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
253252eqcomd 2628 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (𝐴(𝐿𝑋)𝐵))
25415, 251, 2533eqtrrd 2661 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ((𝐴(𝐿𝑋)((𝑇𝑌)‘𝐵)) +𝑒 (((𝑆𝑌)‘𝐴)(𝐿𝑋)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  cdif 3571  cun 3572  wss 3574  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   +𝑒 cxad 11944  [,)cico 12177  cprod 14635  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  hspmbllem2  40841
  Copyright terms: Public domain W3C validator