Proof of Theorem gsummgp0
| Step | Hyp | Ref
| Expression |
| 1 | | gsummgp0.b |
. 2
⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) |
| 2 | | difsnid 4341 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁) |
| 3 | 2 | eqcomd 2628 |
. . . . . 6
⊢ (𝑖 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
| 4 | 3 | ad2antrl 764 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
| 5 | 4 | mpteq1d 4738 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑛 ∈ 𝑁 ↦ 𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) |
| 6 | 5 | oveq2d 6666 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ 𝑁 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))) |
| 7 | | gsummgp0.g |
. . . . 5
⊢ 𝐺 = (mulGrp‘𝑅) |
| 8 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 9 | 7, 8 | mgpbas 18495 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝐺) |
| 10 | | eqid 2622 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 11 | 7, 10 | mgpplusg 18493 |
. . . 4
⊢
(.r‘𝑅) = (+g‘𝐺) |
| 12 | | gsummgp0.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 13 | 7 | crngmgp 18555 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 15 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐺 ∈ CMnd) |
| 16 | | gsummgp0.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 17 | | diffi 8192 |
. . . . . 6
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin) |
| 19 | 18 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin) |
| 20 | | simpl 473 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝜑) |
| 21 | | eldifi 3732 |
. . . . 5
⊢ (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛 ∈ 𝑁) |
| 22 | | gsummgp0.a |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
| 23 | 20, 21, 22 | syl2an 494 |
. . . 4
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
| 24 | | simprl 794 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑖 ∈ 𝑁) |
| 25 | | neldifsnd 4322 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖})) |
| 26 | | crngring 18558 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 27 | 12, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 28 | | ringmnd 18556 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 29 | | gsummgp0.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 30 | 8, 29 | mndidcl 17308 |
. . . . . . 7
⊢ (𝑅 ∈ Mnd → 0 ∈
(Base‘𝑅)) |
| 31 | 27, 28, 30 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 32 | 31 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 0 ∈
(Base‘𝑅)) |
| 33 | | eleq1 2689 |
. . . . . 6
⊢ (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) |
| 34 | 33 | ad2antll 765 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) |
| 35 | 32, 34 | mpbird 247 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅)) |
| 36 | | gsummgp0.e |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
| 37 | 36 | adantlr 751 |
. . . 4
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
| 38 | 9, 11, 15, 19, 23, 24, 25, 35, 37 | gsumunsnd 18357 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵)) |
| 39 | | oveq2 6658 |
. . . . 5
⊢ (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) |
| 40 | 39 | ad2antll 765 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) |
| 41 | 27 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑅 ∈ Ring) |
| 42 | 21, 22 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
| 43 | 42 | ralrimiva 2966 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅)) |
| 44 | 9, 14, 18, 43 | gsummptcl 18366 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
| 45 | 44 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
| 46 | 8, 10, 29 | ringrz 18588 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
| 47 | 41, 45, 46 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
| 48 | 40, 47 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = 0 ) |
| 49 | 6, 38, 48 | 3eqtrd 2660 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
| 50 | 1, 49 | rexlimddv 3035 |
1
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |